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A B S T R A C T   

Scalp EEG plots are plots of scalp potentials against time, and hence, capture spatial information, owing to the 
placement of electrodes on the scalp, as well as, temporal information from variations in brain waves. In this 
paper we propose a novel method to make a combined representation of spatial and temporal information, by 
incorporating the signals into a sparse spatio-temporal frame, such that it can be easily processed by deep 
learning algorithms in the computer vision domain. Familiarities of a model to the test data in the setting of 
emotion recognition from EEG, is also defined, and a form of data splitting such that the model has to perform on 
a set with which it has the minimum degree of familiarity is introduced. A CapsNet architecture is trained on 
DEAP dataset to perform on a cross-subject binary classification task, and tuning of the hyperparameters using 
Bayesian Optimization is analyzed. The proposed model reports a best-case accuracy of 0.85396 and average case 
accuracy of 0.57165 for LOO subject, and a best case of 1.0 and average case of 0.51071 for unseen-subject- 
unseen-record classification, when averaged across all the classes (i.e., valence, dominance, arousal, and 
liking), which is comparable to that reported by other works.   

1. Introduction 

Emotion Recognition using EEG signals is one of the rudimentary 
applications of Human Computer Interfaces (HCI). Emotion Recognition 
could be performed using a variety of sensing mechanisms, like, elec
troencephalogram (EEG), magnetoencephalogram (MEG), electrocar
diogram (ECG), electroocoulogram (EOG), galvanic skin response 
(GSR), heart rate variability (HRV), respiratory rate (RR), skin temper
ature (SKT), etc. [1]. EEG signals could be collected either using invasive 
electrodes placed surgically on the brain to observe its activity, or may 
be non-invasively placed on the scalp. This type of positioning renders, 
to the data, both a spatial dimension owing to the arrangement of 
electrodes, and a temporal dimension owing to the time-variation of 
electrodes potentials. Moreover, EEG signals are highly non-linear [2]. 
Successful distinction of different emotions based on EEG signals from 
non-invasive sensors could enable application of HCI using EEG to a 
more diverse field in medical, technological and entertainment domains. 
Moreover, EEG signals recordings are widely studied in diagnosis of 
various other ailments clinically and the methods and tools developed 
could have a cross-domain application. One reason to focus on emotion 
recognition for developing such tools and methods could be the easy 

availability of experimental data compared to clinical data, which is 
often recorded for the diagnosis of a certain ailment, hence, in turn, 
could be confidential. This provides a strong motivation to pursue 
automated emotion recognition using EEG Signals. 

Clear distinction of emotions using automatic emotion recognition is 
a complicated problem owing to the ambiguous boundaries between 
multiple emotions [1], when mapped to the measured signal domain. 
Hence, majority of studies using EEG for Emotion Recognition focus on a 
dimensional model for emotions, either considering Valence-Arousal 
(two-dimensional model) [3], or considering Valence-Dominance- 
Arousal (three-dimensional model) [4]. Depending on the emotional 
model chosen for the study, the different classes for classification are 
termed as High Valence-Low Valence (HV/LV), High Arousal-Low 
Arousal (HA/LA), and High Dominance-Low Dominance (HD/LD). The 
classifiers could be trained on binary classification task when consid
ering the individual labels separately or multi-class classification 
considering all the labels at once. 

Further, depending on how the classifiers are trained and tested, the 
classification problem could be intra-subject or an inter-subject. When a 
classification model is trained on a portion of data of a single subject 
treated as training set and tested on the data held out from the same 
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person, it could be referred as an intra-subject study [5–7]; and when the 
classification model is trained on data from a set of subjects, but tested 
on data from a subject which it has not been trained on, the study could 
be termed as inter-subject or cross-subject [8–10]. 

In the present research scenario, a lot of works have adopted an intra- 
subject approach. The preference for this methodology could be attrib
uted to the high variability of EEG data, from one experiment to another, 
which makes generalization across subjects even more challenging task. 
Moreover, the cross-subject or cross-dataset studies prefer to use binary 
classification for HV/LV classification. Thus, there is a motivation to 
undertake a cross-subject study that considers richer dimensionality of 
emotions. 

Prior studies in EEG analysis using machine learning methods have 
developed multiple handcrafted features to improve the performance. 
With the advent of deep learning adoption in various fields, many recent 
studies have experimented with these techniques in automated EEG 
analysis domain. However, the common deep learning frameworks, like 
Convolutional Neural Networks (CNN) or Recurrent Neural Networks 
(RNN), could, at a time, capture only either the spatial content or the 
temporal content of the signals without intricate handcrafted features. 
Hence, we have explored the training of a relatively newer deep learning 
algorithm, Capsule Networks (CapsNet) [11], on a form of data repre
sentation that combines both spatial and temporal features. 

The rest of the paper is arranged into a review of different studies 
done in this field, followed by a description of materials and methods 
used for experimentation. Then we present the results and our analysis 
and comparison with other works in the similar domain. Finally, we 
conclude discussing the limitations and scope for future work. The main 
contributions of this study are as follows. 

1.1. Main contributions 

We have listed the following contributions that this work has made in 
terms of novelty. In this work, we apply and test the efficacy of:  

• A spatio-temporal frame group (STF Group) rearrangement of EEG 
recordings, as a time-domain stack of 2D EEG spatial samples. These 
samples are obtained by arranging the corresponding recordings 
snapshot from all the channels into a sparse matrix representative of 
actual electrode positions on the scalp corresponding to the pre
scribed positions in International 10–20 system.  

• Dataset split into testing and cross-validation sets to mirror real- 
world application setting where the model is expected to perform 
on previously unseen data, unseen subjects and unseen stimulus 
(video) to subjects.  

• Use of STF group in 2D convolution algorithms, by passing the 2D 
frames concatenated along the time domain as the channels for the 
input layer without any further processing, and achieve comparable 
performance on binary classification task with other representation 
methods. 

• Applying and tuning CapsNet architecture for the binary classifica
tion task of emotion recognition under completely unseen data to 
obtain detection accuracy comparable to state-of-the-art models. 

2. Related work 

Research on EEG recordings based emotion recognition saw its 
inception with Davidson et al. [12], and has ever since expanded into an 
active research area. A notable development in the task of emotion 
recognition has been the enunciation of 2D and 3D model of emotions 
[13], which has found wide use in the field. Present day studies into the 
field explore both Machine Learning and Deep Learning approaches for 
emotion recognition and classification. We focus on the developments 
made in Computer Vision based Deep Learning approaches in general, 
and specifically the cross-subject studies. 

2.1. Developments in deep learning methods applied to emotion 
recognition 

Applying Deep Learning methods to Emotion Recognition task had a 
focus on CNN based methods, where many researchers have attempted 
various EEG signal preprocessing mechanisms [14,15,7]. C. Cheng et al. 
[14] proposed Emotion Recognition Algorithm based on CNN 
(ERACNN), where they fed a (channel × down-sampled signal × time of 
video) into CNN and tuned the network learning rate, weight initiali
zation function, and momentum to optimize for accuracy. H.Mei and X. 
Xu [15] construct a Pearson Correlation Coefficient (PCC) Matrix for 
each sub-band, assuming the 32-channels as nodes of EEG-based brain 
functional networks. The individual PCC Matrices for sub-bands 
concatenated along the channel dimension becomes the input for 
CNN, which outperformed SVM and GELM on 2-class, 3-class and 4-class 
classification. While in [14] the spatial arrangement of electrodes is 
ignored, in [15], the authors do not include the temporal information in 
EEG recordings in any direct form in their features. 

The caveats from the [14] and [15] have been addressed by Jung
chan Cho et al. [7], where they have used a 3D EEG stream formed by 
stacking 2D EEG matrices to train 3D CNNs. Authors have mentioned 
that the 2D EEG matrices were obtained by rearranging the channel data 
according to actual channel position on scalp, and then interpolation has 
been done for missing channels. This work achieved classification ac
curacy of 99.74%, 99.11%, and 99.73% in the binary classification of 
arousal and valence, and, in four-class classification, respectively. 

Few recent works have resorted to using Capsule Networks instead of 
Convolutional Neural Networks [5,6,8]. J. Guo et al. [5] have used a 
CapsNet model to classify emotions based on Granger Causality Matrices 
between channels computed after decomposing the EEG signals into 
alpha, beta and gamma bands by wavelet transform. This approach, 
however, completely excludes the information in the spatial arrange
ment of electrodes. Yu Liua et al. [6] have used a multi-level features 
primary capsule that combines features learned from multiple layers. 
The Capsule Network is trained subject-wise on matrices of (channel 
number × segment size) on both DEAP and DREAMER datasets to 
classify Valence, Arousal and Dominance. The scores reported for DEAP 
dataset with the proposed approach is lower than normal CapsNet for 
Valence and Dominance. The (channel number × segment size) 
arrangement does not contain any original electrode arrangement in
formation, nor does it definitively ensure incorporation of temporal 
features. 

Hao Chao et al. [8], composed a multiband feature matrix (MFM) by 
separating the parent EEG signal into different bands (α, β, γ, δ) and 
then, arranging the channel information into a 18x18 matrix (MFM), 4 
matrices each for different band produced by mapping actual channel 
positions to a matrix. Duration of the sliding window was set to 3 s, 
while splicing the 60 s videos into segments. Individual samples formed 
from these sections, and inherited the labels of the original sample. In 
this experiment, CapsNet has been trained on these MFMs with 10-fold 
cross-validation on the combined data. The caveat in this approach is 
that the MFMs prepared do not contain any temporal information. 

Bao G et al. [18] separated the EEG into 5 bands (Delta, Theta, Alpha, 
Beta, Gamma), and computed topology preserving differential entropy 
(TP-DE) features. The TPDE features were extracted using CNN and then 
passed through two-level domain adaptation neural network (TDANN) 
for classification. In [23], researches applied multivariate convolution 
network on a 3D feature matrix composed of time-domain features, and 
the channel recordings arranged in the 2D-plane according to the elec
trode positions. The performance of this approach was evaluated using 
10-fold CV on DEAP dataset. While these works included both spatial 
and temporal information in the EEG signals, the cross-validation tests 
performed were not cross-subject. 

Among machine learning algorithms applied to the task of emotion 
recognition, SVM and Naïve Bayes have been explored. Harsh Dabas 
et al. [17] have used the DEAP dataset to test the proposed 3 
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dimensional model of emotion without any specific feature rearrange
ment or preprocessing beyond what was provided by DEAP. In this 
experiment various machine learning algorithms like SVM, Naïve Bayes, 
have been applied to the preprocessed EEG DEAP data set. 

2.2. Cross-subject studies for EEG emotion recognition 

All the works discussed above do not employ any mechanism to 
separate their train and test sets in a way that would represent a real- 
world scenario, where a model trained from a couple of subjects needs 
to perform reliably on other subjects. To develop intuition on model 
performance in this scenario, the following works have carried out a 
cross-subject testing of methods and models. 

There has been an interest in using feature selection from the high 
dimensional EEG signals for cross-subject emotion recognition. Fu Yang 
et al. [19] proposed a method for cross-subject emotion recognition 
based on multiple features that were extracted in order to form high- 
dimensional features by integrating the significance test/sequential 
backward selection and the support vector machine (ST-SBSSVM). The 
proposed ST-SBSSVM has been trained on DEAP [20] and Shanghai Jiao 
Tong University Emotion EEG Dataset (SEED) [21] datasets. Authors in 
this work have claimed that their model achieved an accuracy score of 
0.72 for Valence classification and 0.89 respectively using leave-one- 
subject-out validation. A Decision Tree Classifier based on Sequential 
Backward Selection was used on PSD features by W. Jiang et al. [30] and 
tested on DEAP and self-made photograph EEG (PEEG). They achieved 
65.8% on PEEG and 65.2% on DEAP for valence recognition. Re
searchers in [31] employed various ML models upon features selected 
via cross-subject Recursive Feature Elimination (RFE). The tests were 
run on DEAP and MAHNOB-HCI on Arousal and Valence classification 
adopting n-fold CV method, where n is the number of subjects. Highest 
accuracy achieved on DEAP was by ANN: 0.6461 for arousal and 0.6529 
for valence classification. 

Approaches for extracting features from the EEG signals to either 
reduce the dimensionality or obtain specific signal properties by using 
various transforms have also been adopted. Li X et al. [25] extracted 
nine time–frequency domain features and nine dynamical system fea
tures to train a SVM using “leave one out” verification strategy. The 
authors claimed that proposed model has achieved a highest average 
emotion recognition accuracy of 83.33% (AUC = 0.904) on the SEED 
dataset [21] and of 59.06% (AUC = 0.605) on the DEAP [20] dataset. V. 
Gupta et al. [28] extracted features by applying Information Potential 
(IP) to EEG sub bands obtained by Flexible Analytic Wavelet Transform 
on EEG signals. Random Forests and SVMs were used for prediction to 
obtain 90.48% on SEED, and 79.99% on Arousal classification, 79.95% 
on Valence classification, and 71.43% on HVHA/HVLA/LVLA/LVHA on 
DEAP for leave one out classification task. 

Researchers in [24] employ Empirical Mode Decomposition (EMD) 
and Variational Mode Decomposition (VMD) for feature extraction to 
obtain intrinsic mode functions (IMF). A 3-layered Deep Neural Network 
was used for Classification based on IMFs. The evaluation was per
formed on DEAP dataset, by training on 30 subjects and testing on 2 
subjects. The highest accuracy of 61.25% for Arousal and 62.50% for 
Valence was obtained for VMD based feature extraction. Samarth et al. 
[16] divided the entire signal train of each channel into 10 segments and 
computed several statistical features for the segments as well as the train 
overall. They use a matrix of (channel × statistical features) to feed into 
the CNN while the DNN takes the same matrix in flattened format. The 
CNN model outperformed the Deep Neural Network (DNN) model. Fdez, 
J. et al. [29] used stratified normalization, which employs a participant- 
based feature normalization to subtract inter-participant variability 
from EEG features extracted using Welch’s method, multitaper and 
differential entropy, while retaining emotion information in their study 
for classification of emotions using neural networks. They obtained 
91.6% accuracy on Positive-Negative and 79.6% on Positive-Negative- 
Neutral classification with leave-one-out validation on SEED dataset. 

Table 1 
A review of state-of-the-art methods in emotion recognition on DEAP.  

Sl. 
No. 

Work Description 

1 P. Pandey and K. R. Seeja  
[24]  

- Use EMD and VMD for feature Extraction 
to obtain intrinsic mode functions (IMF) 
(EMD = Empirical Mode Decomposition, 
VMD = Variational Mode Decomposition)  

- Pros: Performed learning on selected 
channels. They had a light model which 
was only 3 layers deep, and performed 
better than more deeper and wider models  

- Cons: Use handcrafted features from EEG. 
Do not exploit the topology of electrode 
placements. Although testing is cross- 
subject, the leave one out validation is not 
strictly followed. Using selected channels 
make the method highly specific for 
emotion recognition task. 

2 Y. Cimtay, E. Ekmekcioglu 
and S. Caglar-Ozhan [27]  

- Use multimodal approach including facial 
expression, GSR, and EEG using different 
CNNs for each mode and training a 
decision tree to output the final result  

- Pros: Model has the ability to detect actual 
emotional state when it is dominant or 
hidden. Introduce a time-delay parameter 
between EEG and other signals – which is 
empirically determined. Used features 
extracted automatically via CNN.  

- Cons: Use multiple input instruments for 
different modalities. The time-delay 
introduced is empirically determined by 
comparing against accuracies obtained for 
different delays. Topology of electrodes 
was not considered in the EEG feature 
matrix 

3 V. Gupta, M. D. Chopda and 
R. B. Pachori [28]  

- Features from selected channels were 
extracted by applying Information 
Potential (IP) to EEG sub bands obtained 
by Flexible Analytic Wavelet Transform on 
EEG signals. Random Forests and SVMs 
were used for prediction  

- -Pros: Results verified on multiple 
datasets. Analysis of classification based 
on each channel  

- - Cons: Used handcrafted features for the 
emotion recognitions task. The 
information in electrode topology is not 
considered. Using selected channels make 
the method highly specific for emotion 
recognition task. 

4 W. Jiang et al [30]  - Decision Tree Classifier based on 
Sequential Backward Selection was used 
on PSD features from DEAP and self-made 
photograph EEG(PEEG)  

- Pros: Used a self-made dataset (PEEG).  
- Cons: Used manually determined PSD 

features and relied on feature selection. 
Did not account for the topology 
information in electrode placements. 

5 W. Zhang and Z. Yin [31]  - Various ML models are employed upon 
features selected via cross-subject Recur
sive Feature Elimination from numerous 
handcrafted features from both time and 
frequency domain.  

- Pros: Testing on different Machine 
Learning Models was performed. A rich 
handcrafted feature representation was 
obtained combining both frequency and 
time domain features upon which RFE was 
performed. Used two datasets for testing  

- Cons: Use of hand-crafted features for 
preparing the initial feature vectors. The 
features considered do not exploit the to
pological arrangement of electrodes. 

6 Pandey, P., Seeja, K.R [33]  - A 12-layered CNN was used on scalogram 
images obtained by applying continuous 

(continued on next page) 
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In [33], a 12-layered CNN was used on scalogram images obtained by 
applying continuous wavelet transform (CWT) to EEG signals, and study 
was conducted on both DEAP and SEED datasets. For DEAP highest 
Valence Accuracy obtained was 61.5, and Arousal Accuracy was 58.5 for 
10 frontal electrodes; and 59.5 and 58 for all 32 electrodes, respectively. 

All these works, however, did not take into account the spatial 
arrangement of electrodes while formatting the feature matrices in any 
form, and instead rely on manually extracted features. These features are 
either fed directly into a Machine Learning model, or are arranged in a 

2D matrix form when the authors have chosen to use some variant of 
CNNs. Also, using a preprocessing step to produce features before 
feeding it into a deep learning model as used in [16,24,29,33] does not 
take advantage of feature extraction capability of deep learning methods 
to the fullest. 

Treating EEG signals originating from different subjects to be having 
different domains, several domain adaptation techniques have also been 
adopted. He Li et al. [9] used Deep Adaptation Networks (DAN) to 
address the subject transfer problem in the domain of EEG-based 
emotion recognition on SEED [21] and SEED-IV [21]. The authors 
claimed that the proposed model achieved the maximum mean accuracy 
of 0.8381 on SEED dataset, and that of 0.5887 on SEED-IV. J. Li et al. 
[10] proposed a Transfer Learning approach to explore and exploit the 
models trained on existing subjects, by making the new subject data 
statistically similar to the sources previously seen with the use of style 
transfer mapping (STM). In this experiment authors have used SVM 
classifier to perform classification task on SEED [21] dataset. Maximum 
mean accuracy reported by the authors is 91.31% on MS-Semi-STM and 
88.92% on MS-S-STM. Deep Domain Confusion (DDC) was used in [26] 
to minimize the difference between source and target domain feature 
distributions, which were obtained by passing Electrode Frequency 
Distribution Maps (EFDMs) constructed from EEG signals through Re
sidual Blocks. Researchers reported 82.16%/4.43% for mean accuracy 
and standard deviation for cross-subject inference task on SEED dataset. 

A number of works have also relied solely on deep learning based 
feature extraction and training for cross-subject emotion recognition. A 
multimodal approach based deep learning architecture was used in [27] 
wherein facial expression, GSR, and EEG were used as the different 
modes. On LUMED-2 for 3 emotion classes: sad, neutral and happy, the 
maximum one subject out accuracy reported was 81.2% and mean one 
subject out accuracy reported was 74.2%. On DEAP, maximum one 
subject out accuracy reported was 91.5% mean one subject out accuracy 
reported was 53.8%. Yucel Cimtay et al. [46] used raw EEG data from 
three different publicly available datasets, DEAP [20], SEED [21] and 
Loughborough University Multimodal Emotion Dataset (LUMED) [22] 
after applying windowing with N/6 overlap, pre-adjustments and 
normalization with employing a median filter to eliminate the false 
detections along a prediction interval of emotions. No manual features 
are extracted, and validation is done by leave-one-subject-out. Authors 
claimed that they obtain mean cross-subject accuracy of 86.56% (for 
two class) and 78.34 % (for three class) on the SEED [21] dataset, 
72.81% on DEAP [20] dataset and 81.8% on the (LUMED) [22] for two 
emotion classes. Researchers have also used an adversarial neural 
network to train and test on SEED in one-subject-out fashion to obtain 
average classification accuracy of 75.31% with standard deviation of 
7.33% [32]. 

Table 1 included below summarizes the recent state of the art models 
in emotion recognition performed on DEAP dataset and analyze the 
techniques employed and their shortcomings in the context of present 
proposed work. 

The review of recent works makes it clear that the studies in cross- 
subject emotion recognition have not integrated the spatial arrange
ment of electrodes on scalp, along with the temporal information in EEG 
signal trains while creating their feature matrices. Using the spatial 
arrangement has yielded good results in some studies which do not 
explicitly perform a cross-subject inference. Many works that do adopt a 
spatial rearrangement (applied to intra-subject recognition), either 
discard the temporal features, or use manual feature extraction methods. 
Also, there are no studies on cross-subject emotion recognition that have 
produced results excluding both degrees of familiarity to the data that a 
model can have (refer 3.2.2) by performing classification on unseen- 
records from an unseen-subject. 

This provides a motivation for this work to use a completely Deep 
Learning based model for cross-subject emotion recognition using 
feature maps that embody both spatial arrangement of electrodes, and 
the temporal features of EEG signal train. CapsNet is chosen as the deep 

Table 1 (continued ) 

Sl. 
No. 

Work Description 

wavelet transform (CWT) to perform 
cross-subject and cross-dataset inference  

- Pros: Rely on the CNN to perform the 
entire feature engineering, hence the 
feature engineering part is also trainable. 
Cross-dataset testing also done. Compari
son between using selected electrodes and 
all electrodes was also made.  

- Cons: The scalograms generated do not 
accommodate any information about the 
topology of electrodes. 

7 J. Liu et al [47]  - Subject clustering based domain 
adaptation, where subjects are grouped 
together based on similarity of emotion- 
specific EEG response. A feedforward 
Neural Network is trained for inference  

- Pros: Clustering of subjects on the basis of 
emotion-specific EEG response gives a 
more logical discrimination method.  

- Cons: The features employed were 
manually extracted. The features did not 
account for the topology of electrode 
arrangement 

8 Yingdong Wang et al. [48]  - Generate a source subject adapted list, and 
then train three models (MLP models) on 
each selected source subject and target 
subject. Target emotion label is obtained 
by distilling the classifiers  

- Pros: Performs cross-subject inference 
with limited target data using the adver
sarial domain adaptation. Use MLP models 
for feature extraction  

- Cons: The feature spaces did not consider 
the topological arrangement of electrodes 
in EEG montages. 

9 Zhen Liang et al. [49]  - A hybrid model fusing CNN, RNN and 
GAN is proposed to extract EEG features 
and fuse them in an unsupervised learning 
scenario  

- Pros: Features extracted using 
unsupervised deep learning. Developed a 
mechanism to fuse features from CNN, 
RNN and GAN and verified the model with 
Leave One Out CV  

- Cons: The feature maps fed into the 
model, did not take into account the 
topology of electrode arrangements. Also, 
fusing three deep-learning models could 
make the overall model complex and 
computation heavy. 

10 Arjun et al. [50]  - The authors utilize an unsupervised LSTM 
with channel-attention autoencoder to get 
a latent space feature representation of 
EEG signals on which a CNN with atten
tion is trained for classification.  

- Pros: They have used unsupervised 
feature extraction methods, and tested the 
method on multiple datasets covering 
different application domains.  

- Cons: Although CNN is used, the 
preceding LSTM which is used to generate 
the latent space features ignores the 
topological arrangement of electrodes.  
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learning model, since, it has been claimed to perform better on sparse 
matrices and have better 3D pose inference. Using CapsNet, a baseline is 
provided where classification is performed on unseen-records from the 
left-out subject, which would serve as a better estimate of how the model 
will perform in a more realistic application setting. 

3. Materials and methods 

In this section we have described about the experimental data and 
methods using three subsections. Subsection-3.1 describes about the 
experimental dataset, Subsection-3.2 describes the methods that have 
been used for data preparation, and Subsection-3.3 describes the 
methods that have been used to perform classification. 

3.1. Experimental dataset 

In this study, we have used DEAP [20] dataset to estimate the per
formance of our proposed approach. DEAP [20] (Database for Emotion 
Analysis using Physiological Signals) dataset contain physiological sig
nals that are interlinked with valence, arousal, dominance, and liking 
emotion states for the different trials and different subjects. DEAP [20] 
dataset contains EEG and other peripheral physiological signals. These 
signals were recorded using the standard 10–20 notation placement of 
electrodes on scalp, when the subjects were watching clips of music 
videos having lengths of 60 s each. Each of the 40 such different videos 
formed a single trial, and this set of trials was repeated over a total of 32 
participants as subjects for the study. The subjects rated these videos on 
different levels of emotional dimensions namely, valence, arousal, 
dominance, and liking. The readings from 32 scalp EEG electrodes were 
recorded at a sampling rate of 512 Hz. Recorded signals were down
sampled to 128 Hz; to sample the data correctly a filter was applied to 
extract the data signals between 4.0 Hz and 45.0 Hz. 

After the application of above steps, the data finally formed into the 
matrix of [40 × 40 × 8064] (40 video/trails × 40 channels (described 
above) × 8064 signal points/data). The signal data of 8064 was obtained 
for 63 s of video and 128 Hz downsampled frequency (128 Hz × 63 s =
8064 samples/channel). All the involved channels would be generating 
the same data range. The labels are derived from the continuous ratings 
that range from 1 to 9, which were provided by the participants (sub
jects) after each trial for the different parameters, valence, arousal, 
dominance, and liking. The matrix of the labels is of the dimension 40 ×
4 (40 trials × 4 labels (Valence, Arousal, Dominance, Liking)). 

3.2. Methods for data preparation 

We perform some data preparation to increase its compatibility with 
the class of algorithms studied, which has been described in this section 
with the help of two subsections. Subsection-3.2.1 described about the 

data preprocessing and augmentation process and Subsection-3.2.2 
described the data splitting process which has been adopted for spe
cial arrangement of the data to perform cross-subject validation and 
testing. 

3.2.1. Data preprocessing and augmentation 
In this study we utilize both temporal and spatial information present 

in the recordings, hence we rearrange the EEG data into spatio-temporal 
frame groups (STF groups). The data downloaded from the dataset 
source had shape of [40 × 40 × 8064] for [trials × channels × samples], 
however, of the 40 channels, only 32 channels were from the EEG 
electrodes, while other 8 channels recorded different physiological sig
nals. Also, the labels were continuous for each emotion, which needed to 
be converted to binary labels. So, before rearrangement, we remove 
these last 8 channels. The 8064 samples represent sampling at 128 Hz for 
60 s of video and 3 s of baseline signal before the beginning of the trial 
{

B1,B2,B3,S1,
Ấ

⋯, S60
Ấ }

. Hence, we take the sample-wise average of the 

baseline signals and subtract the 1 s duration signal so obtained ((B1 +

B2 + B3)/3 ) from the remaining duration of signals sample-wise to yield 

data, 
{

S1⋯, S60

}
, which has a shape of [40 × 32 × 7680]. We then apply 

a z-score normalization to data so obtained, by subtracting the subject- 
wise mean and dividing the subject-wise standard deviation to obtain 
the final working set for signals, {S1⋯, S60} . The labels are converted to 
a binary representation, by applying a fixed threshold mid-way between 
the extremes (i.e., 4.5). 

In literature deep learning techniques have been used over EEG 
signals, where CNN based approach [34,35] has been used over spatial 
features and LSTM based approach [36,37] has been used over temporal 
features of EEG signals. Since EEG recordings generally includes both 
spatial and temporal features, any of the aforementioned techniques 
used in an isolated way could not capture the entirety of the informa
tion. Hence, some works have also used some combination of both. For 
models derived from the computer vision domain, the data needs to be 
reshaped into a 2D matrix format. Traditionally, this has been achieved 
by stacking recording segments from different channels into a frame 
[38,14,5]. 

A defect in such rearrangement of EEG data is that the spatial in
formation present in the original data is lost. The 10–20 electrode 
placement system, being an arrangement of electrodes on the surface, 
contains spatial information of the distributions of brain’s potential. 
Since, computer vision techniques specialize in inference of spatial 
features, using a representation as above would undermine the efficacy 
of these algorithms. Hence, in recent literature [7,8,39], a 2D matrix 
mapping the positions of electrodes has been used, to create spatial 
frames against each sample as illustrated in Fig. 1. The mappings of the 
electrode numbers to standard 10–20 electrode names can be found in 
Appendix-1. 

Fig. 1. Mapping Scalp Electrode Positions to a Matrix.  
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Though the 2D matrix representation could incorporate the spatial 
relations of the signals, the temporal dimension is not available. To 
create a unified representation that would incorporate both spatial and 
temporal data into a single entity, we stack these 2D matrices or spatial 
frames along the third dimension to create spatio-temporal frame (STF). 

Stacking the spatial frames in the third dimension encodes the 
temporal information into what would be the channel dimension of a 
normal RGB image, and hence it can be used by other computer vision 
algorithms without any further rearrangement being necessary. The 
number of spatial frames that were stacked in STFs were chosen so that 
each STF would cover a time duration of 1 s which has been established 
as the appropriate signal duration for EEG analysis in previous studies 
[40]. Since the sampling frequency is 128 Hz, we get 128 frames in each 
STF of shape [9 × 9 × 128]. 

3.2.2. Data split 
When developing algorithms with the motivation for use in the field 

of medical diagnosis, it is desirable that the algorithms generalize well 
enough to an unseen data point. Ideally this unseen data should be in the 
form of a subject never encountered by the algorithm, which would be 
what the trained algorithms are supposed to do in a practical setting. 
Thus, we adopt a data split that would retain unknown data for both 
cross-validation and test sets. 

Since the DEAP [20] data has 32 subjects with 40 videos each, there 
are two levels of familiarization the model could have when a 

conventional K-fold cross-validation or a randomized train-test split is 
used. If all the data samples are randomly mixed, there is a chance that a 
sample in the testing or cross-validation set belongs to:  

(i) The same subject as in training set  
(ii) The same video file or trial as in training set 

In order to train a model which can generalize to completely unseen 
data, it would be required to have a set where the algorithm has neither 
been trained on any data from the unknown subject, nor on any data 
from any known subject recorded using the unknown video. While this 
kind of generalization is ideal, practically it is expected to be sufficient 
with the algorithm generalizing to an unknown subject. 

It must be noted that in studies with subject-wise training and 
testing, with an appropriate split (cross-trial split), familiarity (ii) could 
be eradicated, but in order to eliminate familiarity (i), cross-subject split 
is necessary. However, in this work, we adopt a mixture of the splits to 
make the testing and cross-validation sets, so that the final performance 
evaluation metric is representative of both. 

To achieve a mixed data split representative of a real-world scenario 
where model has to perform on unseen subjects, we choose a random 
subject (S1) from all the subjects (N) and a random trial (S2) from all the 
trials (T), separate all the samples from the selected subject, and the 
samples from the selected trial across all subjects into test set. We repeat 
the same process for the remaining subjects (now, N-1) and trials (now, 

Fig. 2. Illustration of data split method.  

Fig. 3. Capsule Network Architecture.  
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T-1) to obtain the cross-validation set. The algorithm (Fig. 2) for split
ting is as stated below: 

A1 S1 = random subject from N (remaining) subjects; 
S2 = random trial from T (remaining) trials 

A2 Add all samples of S1 into a different set D; 
A3 Iterate through N-1 remaining subjects and accumulate all sam
ples corresponding to S2 trial; 
A4 Add all such accumulated samples to the set D; 

3.3. Methods and Models for Classification 

In this section we have discussed about the classification models 
which have been used in the experiment. Our proposed approach based 
on Capsule Network (described in subsection 3.3.1) and the perfor
mance of the proposed approach has been compared with the perfor
mance of the Convolution Neural Network and Residual Neural 
Network. 

Convolutional Neural Networks and Residual Networks are two 
popular network architectures in Deep Learning for processing spatial 
patterns in images. However, both these methods rely on the technique 
of pooling. The CapsNet architecture is different from these widely used 
models in that it does not utilize pooling. Hence, we describe the Cap
sNet architecture in detail in the subsection below. 

3.3.1. Capsule network 
Capsule Network consists of a vector of neurons rather than con

sisting of single neurons nodes as compared to traditional neural net
works [11]. Hence, they contain more information about the input as 
compared to the information present in neurons in a traditional neural 
network [11]. Capsule Network (Fig. 3) consists of Convolutional Layer, 
Primary Capsule Layer, Secondary Capsule Layer (Emotion Capsules in 
our case) and Fully Connected Layers. The first three layers are called 
Encoder and the Fully Connected Layers are called Decoder. Capsule 
network trains the network model by dynamic routing method [11]. 

Capsules are group of neurons [11]. Various parameters are repre
sented by the activity of these neurons and the probability of the exis
tence of a particular entity are represented by the length of these vectors. 
The main drawback of CNN models are their pooling layers [11]. These 
pooling layers reduce the dimensionality of the feature matrix thereby 
losing most of the information about the input. 

In Capsule networks tackle this loss of information in pooling layers 
by replacing this methodology with Routing by Agreement [11]. Based 
on these criteria all the parent capsule layers in the next layer receive the 
output, however their coupling coefficient are not the same [11]. The 
output of the parent capsule is predicted by each capsule and if the 
prediction is same as the actual output then the coupling coefficient 
between the two capsules increases. If ui is considered the output of 
capsule, then the prediction for parent capsule j is calculated as, 

ûj∨i = Wijui (2)where, ûj∨i is the prediction vector of output of j th 
capsule in higher layer computed by i th capsule in lower level, Wij is the 
weight matrix. 

Coupling coefficients cij are calculated based on the degree of 
conformation between the lower level capsules and the parent capsules, 
using the SoftMax activation function, 

cij =
ebij∑

k
ebik 

(3)where, bij represents the probability whether the 

capsule i will be coupled to capsule j, k being all such capsules in the 
subsequent layer. This is initially set to 0, at the beginning of routing by 
agreement. Hence the parent capsule input vector can be calculated as: 

sj =
∑

icij ûj∨i (4) 
At last the nonlinear squashing function is applied to prevent the 

output vector of capsules from exceeding one as it represents the prob
ability and probability is never greater than 1. The final output of each 
Capsule is given by: 

vj =
‖sj‖

2

1+‖sj‖
2

sj
‖sj‖

(5)where, sj is the Capsule j input vector and vj is its 

output. 
To enable the capsules to learn a better representation, a decoder 

network is also coupled to the Capsule layer, which takes the outputs of 
the capsules, and tries to reconstruct the input. The training loss involves 
a component both from the reconstruction loss and the classification 
loss. 

3.4. Experimentation 

In this section, we describe our approach to experimentation with the 
aforementioned spatiotemporal rearrangement of EEG data with the 
different classification algorithms. In subsection 3.4.1, we discuss the 
reason for our choice of experiment algorithms, and in subsection 3.4.2 
we describe the methodology adopted to reach at the results discussed in 
the subsequent section. 

From Table 1 it was evident that many works in cross-subject 
inference have resorted to using hand-crafted features. This excludes 
the feature extraction method to be trainable and adapt according to the 
problem. Those that do use deep-learning features, ignore the topology 
of electrode arrangement. To fill this gap in research we incorporate the 
spatial information from topological arrangement of electrodes using 
the spatio-temporal rearrangement of EEG recordings as described in 
section 3.2.1. However, such arrangement leads to a sparse feature 
matrix. In order to exploit deep learning based feature extraction on this 
sparse feature matrix, we employ a Capsule Network architecture. 

3.4.1. Why CapsNet based proposed approach has been compared with 
CNN and ResNet? 

With the novel representation of EEG data formulated in this paper, 
we seek to investigate the efficacy of different deep learning algorithms 
on the data. We choose Convolutional Neural Network as the baseline 
model for the performance, and compare and contrast the performance 
of CNN with ResNets, which have a deeper architecture; and CapsNet 
(Refer Table 6), which has an architecture that forgoes the pooling 
layers used in the previous two. 

The main advantage of using Capsule networks over Convolutional 
Neural Networks and Residual Networks are mentioned as follows as per 
[11,41]:  

• CapsNets are better adapted for sparse image pattern recognition  
• CapsNets are better adapted for 3D pose inference 

3.4.2. Experimental details 
In this study, experiments were carried out with the focus of testing 

the inference of capsule networks on a cross-subject dataset that would 
mimic the real-world scenario of model performing on unseen subjects, 
with a rich spatiotemporal feature representation. Hence, the spatio
temporal feature frames generated were fed into the selected classifi
cation algorithms. All the algorithms were trained from scratch. 

The CapsNet was trained on the input 3D frames using 2D convolu
tions along the spatial dimensions with temporal features being com
bined in an early fusion [42] on the custom train set (Refer Fig. 3). The 
training was done using a single GPU on 4-compute node having two 
NVIDIA TESLA V-100(16 GB) GPGPU of HPC Cluster in Central 
Computing Facility, IIITA. We choose to use 2D convolutions in place of 
3D convolutions used in [7], since numerous previous works 
[6,9,10,19,40] have carried out the task of EEG inference treating each 
sample point in the 1 s frame as a separate feature. Moreover, 2D con
volutions considerably reduce the number of trainable parameters, 
which was a major limitation of the said work [7]. 

In order to tune the network a number of experiments were per
formed with different number of primary and secondary capsules. Each 
configuration was trained for 20 epochs in batches of 10 STFs and the 
performance was tuned by minimizing the loss obtained on a separate 
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cross-validation set. The models were tuned for optimal combination of 
length of primary capsules, depth-wise count of primary capsules, 
number of filters in the convolution layer, and length of emotion 
capsules. 

We employ a Bayesian Optimization methodology for finding the 
best set of hyperparameters, since each iteration for parameter optimi
zation involves training on the entire set. Bayesian Optimization is best 
suited for problems where each iteration with a certain set of parameters 
is costly in terms of resources. We model the Bayesian Optimization 
problem using Gaussian Processes. We relate the hyperparameters of the 
model and the maximum cross-validation loss of the model with a 
function, (X) , in the hyperparameters plane, with X = (x1, x2,⋯.., xN) , 
N = 4 . We assume that the known values of f(X) at t previous obser
vations, Ft for their corresponding values of Xt , 0 ≤ t < T , follows the 
distribution of a Gaussian Process with a prior distribution: 

p(Ft ∨ Xt) =
e

(

− 1
2 .Ft K− 1

t F− 1
t

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(2π)t det(Kt)

√ (6) 

Here, Kt is a t × t covariance matrix whose coefficients are derived 
from a kernel as Kmn = K(Xm,Xn, θ), θ being the kernel hyperparameters. 
This Kt represents prior assumption of the function in our Bayesian 
Optimization. In order to the determine the next set Xt+1, that would 
minimize the error, a posterior distribution pt+1

(
ft+1

⃒
⃒Ft ,Xt+1 is estimated 

using the prior, and the surrogate model ft+1 is obtained using condi
tional probability operations on this posterior. Using Expected 
Improvement acquisition function on this surrogate model, a Xt+1 is 
selected so that the difference between the current maximum fmax(X)
and ft+1(Xt+1) is maximized [43,44]. 

EI(X) = E
(

max
(⃒
⃒
⃒ft+1(Xt+1) − fmax(X)

⃒
⃒
⃒,0

))
(7) 

The prior is updated every time we evaluate the function and obtain 
the actual ft+1(Xt+1) under the Bayesian paradigm. This step is repeated 
for a maximum of T = 100 steps. We start with an assumption of the 
hyperparameters X0 = (8,32,5,16) and we define the search space for 
each hyperparameter as:  

(i) length of primary capsules (x|1), x1∊[8, 32]
(ii) depth-wise count of primary capsules (x|2), x2∊[30, 40]

(iii) number of filters in the convolution layer (x|3), x3∊[3, 7]
(iv) length of emotion capsules (x4),x4 ∈ [16, 32]

We repeat this process for each emotion class and find the most 
suitable hyperparameters for each binary classification task. After the 
best hyperparameter combination is obtained, we train a model with 
those hyperparameters and test it on the test set to report the accuracy. 

We also test the performance of a CNN model and a Resnet model on 
the dataset, trained using 10-fold cross-validation; and hyperparameters 
tuned using Grid Search [45]. The hyperparameters chosen for the 
exhaustive search primarily related to the model architecture, and the 
range was limited. The comparison of performances of the deep learning 
models is included in Table 6. 

4. Result and discussion 

The testing has been performed in epochs. Each epoch considers a 
single trial duration for prediction. We report both the best-case and 

average case accuracies obtained during test epochs, since we are per
forming prediction on a cross-subject test case, and the models do not have 
any knowledge of the domain or distribution of the test signals. The ac
curacies reported are tabulated in Table 2. Since, for each test we have 
combined the EEG records from left-out-subject and left-out-records from 
the other subjects, each test-epochs can belong either to left-out-subject or 
the left-out-record. We report the best and average accuracies obtained for 
these different sets separately. Also, from among the test epochs, there 
would be one epoch that corresponds to the left-out-record of the left-out- 
subject. This is the epoch in the unseen subject, unseen record (USUR) 
domain, where the model has zero familiarity. We report the best accuracy 
and accuracies averaged over all the leave-one-out runs for the unseen 
records of the unseen subject in Table 3. The best performing model 
hyperparameters used to achieve the above scores are listed in Table 5. 

The best case accuracies listed belong to a run that performed best 
with regard to the specific criteria stated, e.g., best performance on the 
unseen records. In other words, the best case accuracy for subject and 
record originate from different test epochs, as can be seen from the plots 
of LOO subject and record accuracies (Figs. 4–7). 

The mean of best-case performances for all leave one subject out 
across all prediction classes, thus comes out to be, 85.396%, and that of 
leave one record out comes out to be 84.518%. Similarly, the mean of 
averaged accuracies for leave one subject out across all prediction 
classes comes out to be 57.165%, and that of leave one record out comes 
out to be 53.309%. On the same line, the accuracies for unseen-subject- 
unseen record averaged over all the classes for the best predictions turn 
out to be 100.00% and for the averaged predictions, 51.071%. We argue 
that this accuracy of 51.071%, which is computed from the performance 
of the model on completely unseen data with no familiarity, is a proper 
gauge of what the model would perform in the real world. 

There is a considerable degree of variation in the performance of the 
algorithm on different subjects. Table 4 shows a measure of variance in 
accuracies obtained by the model on dataset. Along with the standard 
deviations reported in Table 2 for the average cases, the quantities 
demonstrate the spread of the performance on the subjects. 

It is however worthy to notice that the subjects on which the model 
does perform better have high precision and recall scores as well, which 
implies the model learns overall better feature representations on these 
subjects. We plot charts of accuracy, precision and recall (Fig. 4 – Fig. 7) 
for various subject + record combination we used during our training 
and validation. The two cases for LOO subject and LOO trials are shown 
in the graph for comparison of performance of proposed model when 
applied to LOO subject or LOO trials separately. The charts also provide 
an insight into how well the model would perform in a LOO subject or 
LOO record, when a particular subject/record is left out. We only 
consider precision and recall scores for predicted label of 1, which is the 
label predicted when the particular emotion class (arousal, dominance, 
valence, liking) is determined to be present in the sample processed. 

Another interesting observation is that although for the labels where 

Table 2 
Best and Average Case Accuracies for CapsNet.  

Labels Arousal Dominance Valence Liking 

Cases 
Accuracies 

LOO Subject LOO Record LOO Subject LOO Record LOO Subject LOO Record LOO Subject LOO Record 

BestCase 84.249 84.167 100.00 90.625 63.042 78.906 94.292 84.375 
Average Case 58.525 ±

15.181% 
54.002 ±
19.001% 

60.966 ±
16.645% 

62.358 ±
19.059% 

48.219 ±
7.832% 

39.937 ±
23.097% 

60.951 ±
18.305% 

56.940 ±
23.125%  

Table 3 
Unseen Subject, Unseen Record Accuracies for CapsNet.  

Labels Accuracies Arousal Dominance Valence Liking 

Best Case  100.000  100.000  100.000  100.000 
Average Case  44.381  67.598  46.571  45.735  
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Fig. 4. Performance chart for arousal label.  

Fig. 5. Performance chart for dominance label.  

Fig. 6. Performance chart for valence label.  

G.C. Jana et al.                                                                                                                                                                                                                                 



Biomedical Signal Processing and Control 72 (2022) 103361

10

accuracies are relatively higher, the precision and recall scores seem to 
closely mirror one another. However, as for the case of valence (Fig. 6), 
the recall scores are much lower. This could explain the poorer perfor
mance of the model on this particular emotional label. This is also 
evident in the performance chart for liking label (Fig. 7). Although the 
precision scores maybe decent for particular subjects, the poor recall of 
the model in these cases, renders a lower performance. Thus, this is a 
caveat where a scope for improvement has been identified. 

We test our spatiotemporal frames on other popular deep learning 
based computer vision algorithms, viz., CNNs and ResNet, trained using 
10-fold cross validation, and then tested on the hold-out data. The model 
hyperparameters were tuned using grid-search [45] cross validation, 
and the accuracy scores obtained for the best classifiers are comparable 
to that obtained in previous works with a similar setting. The compar
ison with the CapsNet model is done on the basis of CapsNet’s perfor
mance on left-out subject. The accuracies obtained on the hold-out data 
was less than CapsNet models for arousal and liking labels, and a sig
nificant outperformance of CapsNet was observed in case of dominance 
label, indicating that the CapsNet model could learn better mapping 
from other deep learning based computer vision models used in litera
ture. We have detailed the results of our experimentation in Table 6. 

Hyperparameter tuning was performed on both CNN and ResNet 
models using grid-search [45]. The hyperparameters chosen to optimize 
in CNN was the nodes in the fully connected layer and the number of filters 
in convolution layers. The best hyperparameter set obtained for CNN was 
128 nodes in the fully connected layer and 64 filters in the convolutional 
layer. For Resnet, the number of filters in 1st convolution layer, 

subsequent convolution blocks, and identical blocks were chosen. The 
best hyperparameters set obtained for ResNet was 64 filters for filters of 
1st convolution layer, and 16 for each subsequent convolutional block; 
while maintaining the ideal number of filters, 16, in the identity blocks. 

We compare our results to other prior works utilizing Capsule Net
works for Emotion Recognition from EEG signals in Table 7. It could be 
observed in Table 6 that the proposed approach based on CapsNet al
gorithm gives a comparable performance to the best reported accuracy 
of other works, when considering the performance on left-out-records. 
Also, it must be noted that in this study classification on all four clas
ses found in the dataset, i.e., arousal, dominance, valence and liking has 
been performed and reported. 

Fig.7. Performance chart for liking label.  

Table 4 
Variance in accuracies for CapsNet (when accuracies ∊ [0,1])  

Labels Arousal Dominance Valence Liking 

Cases Accuracies LOO Subject LOO Record LOO Subject LOO Record LOO Subject LOO Record LOO Subject LOO Record 

Average Case  0.02305  0.03610  0.02770  0.03633  0.00613  0.05335  0.03351  0.05348  

Table 5 
Best Fit Hyperparameters for CapsNet.  

Hyperparameters Arousal Dominance Valence Liking 

Primary Capsule Length 32 23 23 10 
Count of primary capsules 31 38 40 31 
No. of filters (Conv. Layer) 3 4 5 7 
Emotion Capsules Length 22 16 31 32  

Table 6 
Comparison of performance achieved by proposed CapsNet approach with CNN 
and ResNet.  

Model Arousal Dominance Valence Liking 

CNN (128/64)  52.71  41.86  60.47  60.47 
ResNet50  46.51  41.86  60.47  60.47 
CapsNet (Best - Subject)  84.249  100.00  63.042  94.292 
CapsNet (Average)  58.525  60.966  48.219  60.951  

Table 7 
Comparison of our results with other studies that used CapsNet on DEAP.  

Study Method Used Best Accuracy Reported 

Arousal Dominance Valence Liking 

J. Guo et al  
[5] 

CapsNet with 
wavelet 
Transform  

0.8737  –  0.8809  – 

Yu Liu et al  
[6] 

Multi-level 
Features  

0.9831  0.9832  0.9797  – 

Hao Chao. et 
al [8] 

Multi-band 
Feature Matrix  

0.6828  0.6725  0.6673  – 

Proposed Spatio-Temporal 
Frame Group  

0.8417  0.9063  0.7891  0.8438  
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We also make a comparison with prior works which adopted a cross- 
subject testing in Table 8. We consider multiple works that carried out 
cross-subject analysis on DEAP. It can be seen that most of the works 
employing leave-one-subject-out validation have considered only 
valence class to report the accuracy on DEAP dataset. 

We have focused on a single dataset and the performance of the al
gorithm on the various classes of that dataset [20]. Comparing the 

performance on valence class of DEAP dataset, the proposed method has 
given a comparative performance to prior works on emotion recognition 
using EEG signals. Same could be said about the relative performance of 
the proposed method on arousal class; with the best case accuracy 
outperforming prior methods. This establishes that using spatiotemporal 
frames along with CapsNet, could achieve competent performance 
without any additional feature processing. 

Table 8 
Performance Comparison with Different Studies that performed cross subject inference on DEAP dataset.  

Study Method Accuracy Reported 

Arousal Dominance Valence Liking 

Fu Yang et al [19] ST-SBSSVM  –  – 72%  – 
Pallavi Pandey et al [24] VMD + DNN  61.25%  – 62.50 %  – 
Li X et al [25] SVM and specialized feature extraction  –  – 59.06%  – 
V.Gupta et al [28] Random Forests and SVMs  79.99%  – 79.95%  – 
W. Jiang et al [30] Decision Tree with SBS  –  – 65.2%  – 
W. Zhang et al [31] ANN + RFE  64.61%  – 65.29%  – 
Pandey, P. et al [33] CNN on CWT scalograms  58.5%  – 61.5%  – 
Y. Cimtay. et al [46] CNN with median filtering  –  – 72.81%  – 
J. Liu et al [47] Domain Adaptation with subject clustering  68.8%  – 73.9%  – 
Zhen Liang et al [49] CNN-RNN-GAN (EEGFuseNet)  58.78%  61.69% 56.27%  66.30% 
Arjun et al [50] Attention Driven Neural Networks  69.5%  – 65.9%  – 
This Study (Average) STFG + CapsNet  58.525%  60.966% 48.219%  60.951%  

Fig. 8. Plots of Accuracy vs Hyperparameters for Liking Label; with the hyperparameters being, top-left: Length of Primary Capsules, top-right: Count of Primary 
Capsules, bottom-left: Number of Filters in Convolution Layer, bottom-right: Length of EmotionCaps. 
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This could be attributed to the two distinct novelty elements pro
posed in this work. The first being the arrangement of signals in 
spatiotemporal frames which encode both spatial information of elec
trode position and the temporal recordings. The rearrangement is a 
trivial task as it does not involve any additional processing of signals pre 
or post rearrangement. This ensures minimal contribution of any other 
factors to the performance of the model once the data is provided in an 
appropriate format expected by the network. 

Also, we rely on the power of convolutional layer to extract the 
spatiotemporal features like in [10], and expect the dynamic routing 
network of capsules to learn the mappings from these condensed rich 
features to the corresponding class labels. Since Capsule Networks have 
the innate ability to infer from complex non-linearities in the data using 
a rich vector representation of the different extracted features, and 
propagating the learned information without any loss to pooling. 

4.1. Analysis of Adaptability of Capsnet Hyperparameters 

We further analyze the relation between primary capsule length and 
emotion capsule length when applying dynamic routing to the problem of 
EEG emotion recognition. The trends are illustrated in Figs. 8–11. 
Considering the scatterplots for mean accuracy in Fig. 8, it could be 
observed that for arousal class, a lot of experiments were focused on a 

higher number for length of primary capsule, and on both extremes for the 
count of primary capsule, where the most suitable parameter set was 
obtained; however for filters in convolution layer the experiments focused 
on higher numbers, though it must be noted that best-fit set for filters came 
from the point with which least number of experiments were run. And, for 
Length of Emotion Caps, experiments were evenly distributed. 

Interpreting Fig. 9, Fig. 10, and Fig. 11 along with Fig. 8, the trend 
for count of primary capsule is persistent through all the different class 
labels, with experiments being focused on either extreme where the 
best-fit lies. The experiments on filter numbers also have a skewed dis
tribution throughout all the classes, with least number of experiments 
for 3 filters. However, for other classes the best fit value for filter number 
was found to be a different number than 3. 

For classes other than arousal, the experiments for length of emotion 
caps are focused on the extremes of the experimental range, where the 
best-fit values are found. It must be noted that the classes with higher 
number of Emotion Capsules in their best-fit have achieved higher ac
curacy scores, which hints at the necessity of additional dimensionality 
in the EmotionCaps layer. 

For the length of primary capsules, experiments were almost uni
formly distributed throughout, especially when we consider experiments 
that yielded an accuracy score higher than 0.5. The only exception to this 
being the liking class, with more focus on the lower end of the domain, 

Fig. 9. Plots of Accuracy vs Hyperparameters for Arousal Label; with the hyperparameters being, top-left: Length of Primary Capsules, top-right: Count of Primary 
Capsules, bottom-left: Number of Filters in Convolution Layer, bottom-right: Length of EmotionCaps. 
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where the best-fit parameter setting is found. On overall, however, the 
liking class has a clear-cut trend for distribution of experimental focus for 
each of the hyperparameters, and is the one best-classified. 

In a previous work [7] on the same problem, authors utilized a 
different approach that had similarities to our method. They created 
spatiotemporal frames using interpolation to fill the sparse matrix, and 
then expanded the images so created to be 64 × 64, and employed 3D 
convolution network models for inference. This work however, does not 
shed any light on the justification for the method of choice used to 
interpolate, or how the artefacts introduced in temporal domain due to 
such interpolation are accounted for in the training. Hence, we chose to 
stick with simpler frame structures. The total model trained has a 
considerable complexity, with about 129.7 M trainable parameters 
when trained from scratch. This includes both the inference module and 
the reconstruction module, with the majority of parameters being in the 
reconstruction module, which is deeper than the inference module (6 FC 
Layers) in order to transform the ~ 32dimensional vector of Emotion
Caps to 128 × 81 dimensional vector of the corresponding input. 

4.2. Limitations and Future Scope 

In spite of the better performance of our approach, we identify a few 
limitations. Though the final result is representative of the splitting 

mechanism in order to minimize both degrees of familiarity, the repre
sentation however is not uniform, since the majority of samples are from 
the unknown subject - known video rather than unknown video - known 
subject. Also, the unknown subject-unknown video set was not sepa
rated at the time of experimentation. The splits, although made by 
selecting random subjects and videos, are static sets. Producing these 
sets in a K-fold manner is left for future work. 

It is assumed that the uniform thresholding of labels is an accurate 
enough thresholding for the more granular subject ratings, with any 
subject ratings greater than this threshold being considered as indicative 
of the considered emotion. The actual threshold might change depending 
on the persona, biases and other unknown psychological factors of the 
subjects, for example, the ratings from 27th subject are all greater than 5. 
A variable threshold methodology for labelling is left for a future work. 

The problem addressed in this study was of binary classification for 
each class. However, it is desirable to have a model trained to perform 
four-class classification on the dataset. Similarly, study of the use of 3D 
convolutions based CapsNet on the specific problem, and comparison of 
its performance to the 2D convolution based CapsNet is also desirable. 
These are saved for a future study. 

Fig. 10. Plots of Accuracy vs Hyperparameters for Valence Label; with the hyperparameters being, top-left: Length of Primary Capsules, top-right: Count of Primary 
Capsules, bottom-left: Number of Filters in Convolution Layer, bottom-right: Length of EmotionCaps. 
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5. Conclusion 

In this study we present an application of capsule networks to the 
cross subject inference of emotions from EEG signals, using a special 
rearrangement of EEG signals to incorporate both spatial and temporal 
information. We also demonstrate a form of data splitting such that the 
model has to perform on a set with which it has the minimum degree of 
familiarity, forcing it to generalize better. Hence, the result obtained is 
representative of the inference of the model on completely unseen data. 
The model reports a best case accuracy of 85.396% and average case 
accuracy of 57.165%, when averaged across all the classes. Also, the 
proposed methodology beat the best accuracy reported in other works 
employing capsule networks for intra-subject inference. We also study 
the application of Bayesian Optimization for the specific problem and 
analyze the relation between the different hyperparameters and the 
accuracy score, for all the classes in the dataset. It could be concluded 
from the study that using a spatio-temporal representation for EEG 
signals proposed in this work, satisfactory classification scores could be 
obtained on the task of cross-subject emotion recognition, when such 
signal representation is used in training of deep learning algorithms, 
like, CapsNet, ResNet and CNN. The key highlights of the work are:  

• A method of incorporating the topology of electrode arrangement 
along with the temporal information by forming sparse spatiotem
poral frame based features is proposed and implemented  

• We use a data-split methodology that would help us test the model 
with multiple degrees of familiarity  

• We propose using CapsNet to process and infer from the sparse 
spatiotemporal frame based features and obtain a best case accuracy 
of 0.85396 when averaged across all the classes.  

• We also analyze the variation of accuracy for different settings of 
Capsule Network parameters.  

• We provide a baseline for emotion recognition for unseen subject 
unseen record classification (Table 3) 

Experimental Data and Source Code Availability 
Experimental dataset is publicly available is at http://www.eecs.qmul. 

ac.uk/mmv/datasets/deap/ and source code of this experiment will be 
available at https://sites.google.com/site/gcjanahomepage/publications/ 
Publications-Source-Codes (https://doi.org/10.5281/zenodo.5688674). 

Ethical Approval 
This study is performed on a publicly available dataset. None of the 

authors have directly involved in way of experimentation, survey, data 
acquisition, or otherwise, with any human or animal participants for the 
purpose of this study. Since the data used in this study has been acquired 

Fig. 11. Plots of Accuracy vs Hyperparameters for Dominance Label; with the hyperparameters being, top-left: Length of Primary Capsules, top-right: Count of 
Primary Capsules, bottom-left: Number of Filters in Convolution Layer, bottom-right: Length of EmotionCaps. 
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