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Abstract: Brain Computer Interface technology enables a pathway for analyzing EEG signals for
seizure detection. EEG signal decomposition, features extraction and machine learning techniques are
more familiar in seizure detection. However, selecting decomposition technique and concatenation of
their features for seizure detection is still in the state-of-the-art phase. This work proposes DWT-EMD
Feature level Fusion-based seizure detection approach over multi and single channel EEG signals
and studied the usability of discrete wavelet transform (DWT) and empirical mode decomposition
(EMD) feature fusion with respect to individual DWT and EMD features over classifiers SVM, SVM
with RBF kernel, decision tree and bagging classifier for seizure detection. All classifiers achieved an
improved performance over DWT-EMD feature level fusion for two benchmark seizure detection
EEG datasets. Detailed quantification results have been mentioned in the Results section.

Keywords: discrete wavelet transform; empirical mode decomposition; electroencephalogram; EEG
classification; seizure detection

1. Introduction

Electroencephalogram (EEG) signals decomposition and features extraction from the
decomposed segments are popular approaches in seizure detection. A comprehensive con-
text of EEG analysis and its applicability for automatic seizure detection has been discussed
in [1], where authors have presented a survey by considering all possible papers that are
used in the CHB-MIT EEG dataset. We studied and found that various decomposition ap-
proaches from the Discrete Wavelet Transform (DWT) and Empirical Mode Decomposition
(EMD) family are used in seizure detection over EEG signals. Some approaches are studied
and mentioned as follows to provide an overview of our contribution towards showing the
usability of the proposed approach.

A discrete cosine transform (DCT) based approach [2] has been suggested in the
context of EEG signals compression, and this provides us with a basic understanding of
discrete transform even if it is applied over motor imagery EEG data. Similarly, a tunable-Q
wavelet transforms (TQWT) and fractal dimensions-based approach [3] has been proposed
for seizure detection. In the same context in [3], fractal dimensions features are extracted
from all decomposed sub-bands; afterward, the features are fed into a support vector
machine (SVM) with an RBF kernel. The authors of [3] claimed that their approach achieved
a minimum accuracy of 98.50% and maximum accuracy of 100% over the University of
Bonn single channel EEG dataset, but they have not tested their approach over a multi-
channel EEG dataset. Another wavelet-based approach is named flexible analytic wavelet
transform (FAWT) [4], which has been used for EEG signals decomposition to propose
seizure detection approaches, where entropy-based features have extracted and been fed
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into SVM with an RBF kernel. The authors of [4] claimed that their approach achieved an
accuracy of 94.41% over the Bern Barcelona database. In the literature [5–8], we observed
that only DWT has been considered for EEG signals decomposition to propose a seizure
detection approach. However, the impact of using DWT over the multi-channel EEG
signals/data has not been addressed. However, the approach mentioned in [5] achieved an
accuracy of 98% using a random forest classifier; the approach mentioned in [6] achieved
an accuracy of 99.25% using an SVM classifier; and the approach mentioned in [7] achieved
an accuracy of 100% with a GA-ANN classifier. The approaches mentioned in [5–7] have
tested over the University of Bonn single channel EEG dataset only, but they have not used
CHB-MIT or other multi-channel EEG dataset to test their proposed approach. On the
other hand, the authors of [8] have considered the University of Bonn and CHB-MIT EEG
datasets (i.e., single and multi channel EEG dataset) to test their approach and claimed
that their approach with SVM achieved an accuracy of 89.03% over CHB-MIT and 97.67%
over Bonn.

Similarly, several studies have been conducted for seizure detection by considering
only EMD-based decomposition approaches. We observed in most of the studies [9–12]
that the authors have used EMD as baseline technique for EEG signals decomposition
and, after that, they have extracted several features from its derivative (namely Intrinsic
Mode Functions, i.e., IMFs). The authors of [9] claimed that EMD with SVM, KNN, naive
Bayes and logistic regression classifiers achieved an accuracy of 94.56%, 95.63%, 96.8%
and 96.25%, respectively, and using ensemble EMD with SVM, KNN, naive Bayes and
logistic regression obtained an accuracy 96.06%, 97%, 97% and 96.25%, respectively. In [10],
the authors claimed that their approach achieved an accuracy, sensitivity and specificity
of 92.9%, 94.3% and 91.5%, respectively, over the CHB-MIT dataset. The authors of [11]
mentioned that their approach achieved an accuracy of 90% (for 50 pairs of signals) and
82.53% (for 750 pairs of signals) over a Bern Barcelona database. Similarly, in [12], the
authors mentioned that their approach achieved an average accuracy of 99.3% to 100% for
the SVM-based classifier over the Bonn dataset.

In another study, an extended version of EMD named Multivariate Empirical Mode
Decomposition [13] has been proposed for seizure detection. However, the authors have not
studied the usability of considering EMD over multi-channel EEG signals/data. However,
the proposed approach in [13] achieved an acceptable classification (i.e., detection) accuracy
of 87.2% over the University of Bonn single channel EEG dataset.

On the other hand, in [14], the authors have proposed a seizure detection approach
based on DWT analysis of the dominant IMFs resulting from the EMD of the EEG signals.
The authors of [14] claimed that their approach achieved an average accuracy of 100% over
the Bonn dataset, but they have not tested their approach over the multi-channel EEG
dataset. Instead of using DWT and EMD sequentially, the authors of [15] have used DWT
and EMD individually for seizure detection and achieved an average accuracy between
92.27% to 97.18% over the CHB-MIT multi-channel EEG dataset. With the concept of
wavelet, a Fourier–Bessel series expansion-based empirical wavelet transform approach [16]
has been proposed for the elimination of ocular artifacts from EEG single, and the authors
claimed that their approach achieved a mean absolute error of 0.029 for alpha rhythm.
In addition to [14], another sequential use of DWT and EMD has been proposed by the
authors of [17] for seizure detection and achieved a highest accuracy of 100% for the use of
EMD and DWT, respectively, over the single channel EEG dataset; moreover, they have
not tested their approach over the multi-channel EEG dataset. The study in [18] has been
showed the usability of DWT and EMD for EEG channel selection for seizure detection
over the CHB-MIT EEG dataset, and the authors mentioned that their approach achieved
95.00% accuracy for the use of all EEG channels and 97.50% for the use of only two EEG
channels. Similarly to DWT a tunable-Q wavelet transform-based approach, Ref. [19] has
been proposed seizure detection, and the authors mentioned that their approach achieved
an accuracy of 99% over the Bonn EEG dataset, but they have not tested their approach
over a multi-channel EEG dataset. Not only in seizure detection has the DWT and EMD
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mixture models been used, in [20] a probability based Generalized Mixture Distribution
Model has also been used for emotion classification by using EEG signals, and the authors
claimed that their approach achieved an accuracy of 89%.

After this literature study, we observed that most of the studies used both DWT and
EMD decomposition techniques individually or sequentially to propose seizure detection
approach. However, there is a scope of extracting the DWT and EMD coefficient features
parallelly at a time from an EEG segment, and it is possible to extract statistical features
from the coefficients and to concatenate them for seizure detection. Thus, in the same
context, we motivated to work on to concatenate DWT coefficient-based feature matrix and
EMD IMF-based feature matrix.

Moreover, a conclusive performance analysis has been performed as to whether our
proposed approach has any usability over single and multi-channel EEG signals to detect
seizure (more specifically, ictal and non-ictal).

Our Contributions

(1) We have proposed a seizure detection approach based on the concatenation of DWT
coefficient-based feature matrix and EMD IMF-based feature matrix.

(2) We have tested our proposed approach over the single and multi-channel EEG datasets
to provide a conclusive analysis with four classifiers with respect to DWT and EMD
approaches individually.

(3) This study investigates and suggest the prominent usability DWT-EMD-based features
concatenation over the multi-channel EEG signals with respect to usability over single
channel EEG signals.

The rest of the manuscript is organized as follows: In Section 2, materials and methods
(including illustration of the proposed approach) have been described. We have shown the
results and the discussion (including comparison with existing schemes) of this paper in
Section 3. Then, conclusions and future scope are mentioned in Section 4.

2. Materials and Methods

This section describes the materials and methods used in this study. Section 2.1
describes experimental data and baseline methods, and Section 2.2 illustrates the pro-
posed approach.

2.1. Experimental Data and Baseline Methods

This subsection describes experimental data and baseline methods. Section 2.1.1,
describes experimental data, and Section 2.1.2 describes baseline methods as follows.

2.1.1. Experimental Datasets

In this study, we have used two benchmark EEG datasets, namely dataset1 and
dataset2. A brief description of the dataset1 and dataset2 is mentioned in the following.

Dataset1: In this study, we have used the CHB-MIT scalp EEG dataset [21,22] as an
experimental dataset1. In dataset1, we have considered ten cases (i.e., chb01 to chb10)
out of twenty-three cases. The considered ten cases have recordings of 23 EEG channels.
With reference to a study presented in [23], we have considered the channels F3-C3, C3-P3,
F4-C4 and C4-P4, which reflect actable seizure detection performance in their study. Then,
we have utilized 57 ictal files that vary with the ictal time period and 57 non-seizure files
for data balancing. Non-ictal data contain 60 s of data in each file.

Dataset2: We have used the University of Bonn EEG dataset [24,25] as a second
experimental dataset, i.e., Dataset2. It has five zip files named set A, B, C, D and E, and
each zip file contains 100 text filles and each text file possesses 4096 samples of one EEG
time series. Each recording has a duration of 23.6 s with a sampling frequency of 173.6 Hz.
In this study, we have considered Set A (healthy patients, i.e., having non-ictal data) and
Set E (seizure patients, i.e., having ictal data).
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2.1.2. Baseline Methods

In this subsection, we have mentioned all baseline methods that were employed in
this study.

(1) Preprocessing: EEG recordings sometime have a few noisy segments due to loos-
ened electrode placement, subject eye blinking and muscle activities. Thus, there
is a requirement of basic preprocessing. In this study, we have applied a Butter-
worth [26–28] second-order band pass filter in the frequency range of 0.5–70 Hz for
basic preprocessing.

(2) Signal Decomposition using DWT: EEG signals are non-stationary [29]. In nature,
this means that its behavior varies with respect to time. Discrete wavelet transforms
(DWT) [30–32] decompose input signals and produces a set of characteristic signals in
the form of approximation coefficients and detail coefficients. An input signal passes
into a series of filters to estimate DWT. Consider an input signal ‘S’ passing into a
series of filters to estimate its DWT. Firstly, the signals are passed into a low-pass filter
with an impulse response, say ‘G’. Equation (1) expresses this mathematically.

y[n] = (S ∗ G)[n] =
∞

∑
k=−∞

S[k]G[n− k] (1)

Moreover, the input signals are simultaneously decomposed by using a high-pass
filter. In DWT, the low-pass filter produces outputs as an approximation coefficient, and
the high-pass filter produces outputs as a detail coefficient.

In this proposed approach, we have used 5 levels of decomposition (after performing
several test cases of choosing levels of decomposition) with ‘Haar wavelet’ [33] as the
mother wavelet function. The illustrative output (i.e., approximation and detail coefficients)
of experimental EEG signals is shown in Figure 1a–f.
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Figure 1. Shows all coefficients of five levels of DWT over experimental EEG signals. (a) shows the
approximate coefficient, and (b–f) shows other detailed coefficients of DWT level 5.

(3) Signal Decomposition using EMD: Empirical mode decomposition (EMD) is a more
popular technique for non-stationary signals decomposition [34–36]. EMD decom-
poses its input signals into different intrinsic mode functions (IMFs). IMFs follow two
main properties [35]: (a) the count of local minima and maxima varies as a maximum
by one and (b) has a mean value of zero. Algorithmic and conceptual details have
been reported in [34,35]. In this experiment, the EMD technique has been applied on
input EEG signals from the both datasets, and a few sample outputs are plotted and
shown in Figure 2a–e.
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Figure 2. Shows five IMFs of EMD applied on chb01_01 of Dataset2. IMF0, IMF1, IMF2, IMF3 and
IMF4 are shown in (a–e) accordingly.

(4) Statistical Feature extraction: In the feature extraction process, seven statistical features
have been extracted from DWT coefficients, and six features have been extracted from
IMFs of EMD. The extracted features from DWT coefficients are mean (Equation (2));
variance (Equation (3)); standard deviation (Equation (4)); curve length (Equation (6));
skewness (Equation (8)); kurtosis (Equation (9)); and minima (Equation (7)). On the
other hand, variance; Root Mean Square (RMS) (Equation (5)); standard deviation;
curve length; skewness; and kurtosis features have been extracted from IMFs of EMD.
The formula of each considered features is presented in Table 1.
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Table 1. Mathematical formula of considered features.

Considered Features Mathematical Representation Equation No.

Mean (µ)

µ = 1
n

n
∑

i=1
xi (2)

In Equation (2), mean is denoted as ′µ′.′n′ is total number of samples, xi ∈ {x1, x2, x3, . . . xn}
denoting EEG time series sample points. ‘i’ is an integer number that belongs to 1 to n. More related

details can be found in [17,37].

Variance
(
σ2)

σ2 = 1
n

n
∑

i=1
(xi − µ)2 (3)

In Equation (3), variance is denoted as σ2. ′n′ is total number of samples. xi ∈ {x1, x2, x3, . . . xn}
denoting EEG time series sample points. ‘µ’ is the estimated mean (refer Equation (2)) of the

considered samples. ‘i’ is an integer number that belongs to 1 to n. More related details can be found
in [17,37].

Standard deviation (σ)

σ =

√
n
∑
i
(xi−µ)2

n
(4)

In Equation (4), standard deviation is denoted as σ. ′n′ is total number of samples.
xi ∈ {x1, x2, x3, . . . xn} denoting EEG time series sample points. ‘µ’ is the estimated Mean (refer

Equation (2)) of the considered samples. ‘i’ is an integer number that belongs to 1 to n. More related
details can be found in [37].

Root Mean Square (RMS)

RMS =

√
1
n

n
∑

i=1
x2

i
(5)

In Equation (5), Root Mean Square is denoted as RMS. ′n′ is the total number of samples.
xi ∈ {x1, x2, x3, . . . xn} denoting EEG time series sample points. ‘i’ is an integer number that belongs

to 1 to n. More related details can be found in [38].

Curve length

CL(n) = log(
n
∑

i=2
|xi − xi−1|) (6)

In Equation (6), curve length is denoted as CL(n). ′n′ is total number of samples.
xi ∈ {x1, x2, x3, . . . xn} denoting EEG time series sample points. ‘i’ is an integer number that belongs

to 2 to n. More related details can be found in [39].

Minima
Amin = |An| , i f |An|〈|An+1| and |An〈An−1| (7)

In Equation (7), Minima denoted as Amin. A implies amplitude, and ’n’ is the total number of
samples. More related details can be found in [40].

Skewness

sk = 1
n

n
∑

i=1
(

xi−µ
σ )

3
(8)

In Equation (8), Skewness is denoted as ′sk′, σ is the standard deviation (refer Equation (4)) of the
considered samples, ’n’ is total number of samples and xi ∈ {x1, x2, x3, . . . xn} denoting EEG time
series sample points. ‘µ’ is the mean (refer Equation (2)) of the considered samples. ‘i’ is an integer

number that belongs to 1 to n. More related details can be found in [17].

Kurtosis

Ku = 1
n

n
∑

i=1
(

xi−µ
σ )

4
(9)

In Equation (9), Kurtosis is denoted as ′Ku′. σ is the standard deviation (refer Equation (4)) of the
considered samples. ’n’ is total no. of samples, xi ∈ {x1, x2, x3, . . . xn} denoting EEG time series

sample points. ‘µ’ is the mean (refer Equation (2)) of the considered samples. ‘i’ is an integer number
that belongs to 1 to n. More related details can be found in [17].

(5) DWT-EMD Features Level Fusion: Feature concatenation has been performed indi-
vidually for both experimental datasets. The detailed process is described as follows.

For Dataset1, it has ictal and non-ictal EEG recordings. We have considered ictal
recordings as per the time stamp contained in the dataset description. As ictal periods vary
subject to subject, the feature matrix (after DWT, EMD and statistical feature extraction),
hence, also vary for the ictal periods after feature concatenation. For non-ictal periods, we
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have considered 60 s recordings from non-ictal files. Dataset1 has EEG recordings with
256 Hz sampling frequency. Thus, the number of datapoints taken to ensure feature extrac-
tion is 60 × 256 = 15,360. The number of channels considered is 4, which resulted in the
shape of (15,360, 4) (initial data matrix before DWT, EMD and feature extraction). Currently,
DWT (Haar, level-5) has been applied to each channel. After DWT, for each channel, we
received 6 coefficients (one approximate coefficient and five detailed coefficients). Thus, we
now obtain 24 (4 × 6) DWT coefficients features from the four channels. We have currently
extracted 7 statistical features (mentioned in the features extraction section) from each
DWT coefficients (a total of 24). Thus, we have 168 (24 × 7) statistical features for each
seizure (ictal) and non-seizure (non-ictal) file. We have considered 58 seizures (ictal) and
non-seizure (non-ictal) files, and the resultant feature matrix (after DWT and statistical
feature extraction) has a shape of (58, 168) for the both seizure and non-seizure.

Similarly, EMD has been applied on 4 channels individually, and 5 IMFs have been
considered from each channel for further feature processing (i.e., we have 20 IMFs from
4 channels). Then, six statistical features were extracted from each IMFs. Thus, we have 120
(4 × 5 × 6) statistical features for one seizure (ictal) file and for non-seizure (non-ictal) files
(we have considered 58 seizure and non-seizure files, respectively). Finally, for EMD, we
have a feature matrix of shape of (58, 120) for considered seizure segments and the same for
the considered non-seizure segments. Now, concatenation of two feature matrixes (DWT
coefficient-based statistical feature matrix and EMD IMF-based statistical feature matrix)
has been performed for the both seizure and non-seizure feature representations.

For Dataset 2, we considered two sets (Set-A and Set-E) as experimental dataset 2, and
further feature processing has been carried out. Set-A and Set-E each contain 100 files, with
each file having 4096 EEG data points. We have split 4096 points into 8 files possessing
512 points each. Thus, for seizure and non-seizure, we have 800 (100 × 8) data segments
with 512 EEG data points. Currently, we applied DWT (Haar, level-5) over each data
segment (having 512 EEG data points) and estimated 6 DWT coefficients (one approximate
coefficient and five detailed coefficients) features. After, 7 statistical features have been
extracted from each DWT coefficients for all EEG data segments. Thus, we have 42 (6 × 7)
features based on DWT and statistical features. Therefore, after DWT and statistical feature
extraction, we have a feature matrix shape of 800 × 42. Simultaneously, we have applied
EMD over all data segments, and 5 IMFs have been extracted from each data segments.
Then, 6 statistical features have been extracted from each IMFs for all EEG data segments.
Thus, we obtain 30 (5 × 6) features based on EMD and statistical features. Therefore, after
EMD and statistical feature extraction, we have a feature matrix shape of 800 × 30. The
same process has been followed for seizure (Set-E) and non-seizure (Set-A) EEG data.

Concatenation of two feature matrices (DWT coefficient-based statistical feature matrix
and EMD IMF-based statistical feature matrix) has been conducted for both seizure and
non-seizure feature representations.

(6) Classifiers: In this experiment, we used four classifiers, namely support vector ma-
chine (SVM) without kernel and with RBF kernel; decision tree (DT); and a bagging
classifier to estimate seizure detection (i.e., ictal and non-ictal classification) perfor-
mance over DWT and EMD-based statistical features. The baseline of the considered
classifiers is mentioned as follows.

SVM Classifier: SVM serves as a classifier and regression model on the basis of optimal
hyperplane [41,42]. It separates the features in linearly or nonlinearly distinguishable
patterns [43]. Here, we have used SVM without kernel and SVM with RBF kernel (C = 100,
default gamma value) as a classifier. Algorithmic details of SVM and its application can be
found in [44].

Decision Tree Classifier: This is one of the more popular non-parametric approaches
for multistage decision making [45]. The main concern of multistage decision making is to
divide complex decisions into several nodes of simpler decisions [45]. In a decision tree,
features are represented by nodes, and categorical outcomes are represented by leaves [46].
A decision tree uses the Gini index and entropy as measures for splitting a node [45,46].
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More extensive explanations of the Gini index and entropy measurements for splitting
measures appear in [46]. In this experiment, we have used the criterion (default) as Gini
(for Gini impurity) and Entropy (for the information gain). The maximum depth of the tree
is 4 (i.e., max_depth = 4).

Bagging Classifier: This is a meta-ensemble approach that takes random subsets as
inputs and predicts the outcome after combining the results from different classifiers [47].
The classifiers are run in parallel, and they learn independently. It helps in reducing
variances of data and, therefore, reduces overfitting [48,49]. More extensive explanations
of the bagging classifier are mentioned in [47]. In this experiment, the bagging classifier
has been configured with a decision tree as a base estimator (i.e., base_estimato = dt) in
order to fit on random subsets of the dataset. After several test cases, we have considered
300 base estimators in the ensemble (i.e., n_estimators = 300).

2.2. Illustration of Proposed Approach

Proposed DWT-EMD features concatenation-based seizure detection approaches use
supervised learning for discriminating ictal and non-ictal EEG signals. An illustrative
diagram of the proposed approach is shown in Figure 3. The input EEG signal mentioned
in Figure 3 is considered after applying a Butterworth filter. Detail descriptions of each
entity of the Figure 3 are mentioned in Section 2.
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Figure 3. Illustrative diagram of the proposed approach.

3. Results and Discussion

Performance evaluation has been performed on three cases over two (multi and single-
channel) benchmark EEG datasets (Dataset-1 and 2) in order to visualize the usability
of proposed DWT-EMD features concatenation-based seizure detection approach. Three
different cases have been taken into consideration in this study. Thus, the considered cases
are as follows.
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Case 1: Input EEG signals are preprocessed by using the Butterworth filter; then, DWT
(Haar and level-5) is applied. Then, seven features have been extracted from each resultant
DWT coefficient. Finally, the DWT coefficient-based statistical features matrix is fed into
the considered classifiers in order to estimate seizure detection (i.e., ictal and non-ictal
classification) performance.

Case 2: Input EEG signals are preprocessed using the Butterworth filter; then, EMD is
applied to extract 5 IMFs. Then, six features have been extracted from each IMFs. Finally,
the EMD IMF-based statistical features matrix is fed into the considered classifiers in order
to estimate seizure detection (i.e., ictal and non-ictal classification) performance.

Case 3: In case three, we have considered feature matrices of case 1 and 2 for features
concatenation, i.e., the DWT coefficient-based feature matrix and EMD IMF-based feature
matrix have been concatenated; then, the final DWT and EMD-based feature matrices are
fed into the considered classifiers for estimating seizure detection (i.e., ictal and non-ictal
classification) performance.

Seizure detection performance of the different classifiers over different cases has
been evaluated by using the following measures: Accuracy score, F1 score and Matthews
correlation coefficient (MCC). All considered performance evaluation parameters are very
standard; thus, we are not describing them by using formulas. The results of the considered
cases are discussed in Section 3.1.

We have used Google Colab Python environment for implementing the source code of
this experiment and used the improved results achieved with the mentioned hyperparame-
ter only.

3.1. Results

In this subsection, we have presented the experimental results of this study by using
different subsections as follows.

3.1.1. Performance under Case-1

In case-1, the statistical feature matrix is based on DWT coefficients. The estimated
best performance of the considered classifiers over both datasets under case-1 is provided
in Tables 2 and 3. Table 2 shows the performance of Dataset-1 (multi-channel), where we
can observe that all classifiers achieved an accuracy between 80 and 82 percent, but MCC
has noticeable variance, and very few variances are observed for a few of classifiers, which
is not acceptable in any binary classification task. This advises us to work on the feature
matrix to improve performance.

Table 2. Estimated performance over Dataset-1 under case-1.

Classifier Used Best Performance with Hyperparameters Accuracy * F1 Score * MCC *

SVM + RBF C = 100, kernel = ‘rbf’ 82.85 64.28 85.71

SVM default 82.85 83.33 70.71

Decision Tree criterion = ‘gini’, max_depth = 4 80.00 55.55 11.78

Bagging Classifier base_estimator = dt, n_estimators = 300, max_samples = 0.5 80.00 82.92 58.92

* Unit of measurement considered as percentage.

On the other hand, Table 3 shows the estimated performance of all classifiers over
Dataset-2 (single channel) under case-1. From Table 3, we can observe that all classi-
fiers achieved higher performance in comparison to performance achieved on Dataset-1
under case-1.
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Table 3. Estimated performance over Dataset-2 under case-1.

Classifier Used Best Performance with Hyperparameters Accuracy * F1 Score * MCC *

SVM + RBF C = 100, kernel = ‘rbf’ 99.79 99.80 99.58

SVM default 98.95 98.99 97.93

Decision Tree criterion = ‘gini’, max_depth = 4 99.37 99.40 97.93

Bagging Classifier base_estimator = dt, n_estimators = 300, max_samples = 0.5 99.37 99.40 98.74

* Unit of measurement considered as percentage.

3.1.2. Performance over Case-2

In case-2, the statistical feature matrix is based on EMD IMFs. Estimated best perfor-
mance of the considered classifiers over both datasets under case-2 is provided in Tables 4
and 5. Table 4 shows the performance of Dataset-1 (multi-channel), where we can observe
that all classifiers achieved an accuracy with a high percentage between 80 and 91, but
MCC percentage is only high for the bagging classifier. Thus, the overall performance is
not good for this binary classification with respect to MCC. This advises us to work on the
feature matrix in order to improve the performance of all classifiers.

Table 4. Estimated performance over Dataset-1 under case-2.

Classifier Used Best Performance with Hyperparameters Accuracy * F1 Score * MCC *

SVM + RBF C = 100, kernel = ‘rbf’ 80.00 81.08 63.21

SVM Default 82.85 84.21 67.68

Decision Tree criterion = ‘gini’, max_depth = 4 85.71 87.17 72.34

Bagging Classifier base_estimator = dt, n_estimators = 300, max_samples = 0.5 91.42 92.68 82.49

* Unit of measurement considered as percentage.

On the other hand, Table 5 shows that all classifiers achieved an acceptable perfor-
mance with high accuracy, F1 score and MCC over the Dataset-2 under case-2.

Table 5. Estimated performance over Dataset-2 under case-2.

Classifier Used Best Performance with Hyperparameters Accuracy * F1 Score * MCC *

SVM + RBF C = 100, kernel = ‘rbf’ 98.33 98.41 98.75

SVM default 99.37 99.39 98.75

Decision Tree criterion = ‘gini’, max_depth = 4 99.58 99.60 99.16

Bagging Classifier base_estimator = dt, n_estimators = 300, max_samples = 0.5 99.37 99.40 98.74

* Unit of measurement considered as percentage.

3.1.3. Performance over Case-3

In case-3, the statistical feature matrix is based on DWT coefficients and EMD IMFs.
The estimated best performance of the considered classifiers over both datasets under
case-3 is provided in Tables 6 and 7. Table 6 shows the performance over Dataset-1
(multi-channel) under case-3, where we can observe that all classifiers achieved improved
performances in comparison to the performances shown in Tables 2 and 4. In case-3,
all classifiers achieved high accuracies above 91 percent, F1 score above 90 percent and
MCC above 82 percent. The results of case-3 under Dataset-1 advise us to consider the
concatenated DWT-EMD feature matrix in order to improve seizure detection performance
over multi-channel EEG signals. Therefore, the proposed approach has true usability for
seizure detection over multi-channel EEG data.
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Table 6. Estimated performance over Dataset-1 under case-3.

Classifier Used Best Performance with Hyperparameters Accuracy * F1 Score * MCC *

SVM + RBF C = 100, kernel = ‘rbf’ 91.42 91.42 83.00

SVM Default 91.42 90.32 82.78

Decision Tree Criterion = ‘gini’, max_depth = 4 91.42 92.30 84.01

Bagging Classifier base_estimator = dt, n_estimators = 300, max_samples = 0.5 94.28 94.73 89.11

* Unit of measurement considered as percentage.

On the other hand, Table 7 shows similar performance as those observed in Tables 3 and 5
over Dataset-2 (single channel) under case-1 and case-2, respectively.

Table 7. Estimated performance over Dataset-2 under case-3.

Classifier Used Best Performance with Hyperparameters Accuracy * F1 Score * MCC *

SVM + RBF C = 100, kernel = ‘rbf’ 99.37 99.38 98.75

SVM default 100 100 100

Decision Tree Criterion = ‘gini’, max_depth = 4 99.58 99.56 99.16

Bagging Classifier base_estimator = dt, n_estimators = 300, max_samples = 0.5 100 100 100

* Unit of measurement considered as percentage.

The performances mentioned in Tables 3, 5 and 7 advise us of the following: The
proposed DWT-EMD feature concatenation approach is not very beneficial for improving
seizure detection performance over single-channel EEG signals. However, Table 7 shows im-
proved performance in comparison to the performances shown in Tables 3 and 5. Therefore,
the proposed approach also has some usability for seizure detection over single-channel
EEG data.

3.2. Comparison with Existing Schemes

In this study, we have compared ictal and non-ictal classification performances of our
proposed approach (seizure detection using DWT coefficients and EMD IMF-based EEG
features concatenation) with suitable existing state-of-the-art approaches over the same
experimental datasets. Most of the existing work used Dataset-2 (University of Bonn Single
channel EEG dataset) for analyzing the performance of their proposed approach. With
the help of Tables 2–7, we have shown a detail experimental analysis over two datasets
(Dataset-1 (multichannel) and Dataset-2 (single channel)) by considering four classifiers
under three cases. This comparison indicates the usability of DWT-coefficients and EMD-
IMF-based EEG features concatenation in seizure detection over multi and single-channel
EEG signals.

On the other hand, comparisons are presented in Table 8 to understand the relevance
of our proposed work on existing similar state-of-the art approaches. Several schemes have
been suggested by using DWT and EMD decomposition techniques for seizure detection
over the same datasets. Vipin Gupta et al. [4] proposed flexible analytic wavelet transform
(FAWT)-based seizure detection approach and achieved accuracies of 94.41% and 93.80%
and MCC of 89% and 88% using LS-SVM and KNN, respectively, over Dataset-2 (single
channel EEG dataset). On the other hand, our proposed approach with four classifiers
achieved an accuracy between 99.37 and 100% and MCC between 98.75 and 100% over
Dataset-2. Similarly, Anurag Nishad et al. [19] reported a seizure detection approach based
on tunable-Q wavelet transform (TQWT), and the authors have claimed that their approach
achieved an accuracy of 99% using random forest classifiers over the features taken from
Dataset-2. On the other hand, our proposed approach achieved higher performance (than
reported in [19]) by all four classifiers over Dataset-2. Another seizure detection scheme
has been proposed by Mehdi Omidvar et al. [7], where authors have used several features
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from DWT coefficients to perform the detection process. In [7], the authors have claimed
that classifiers ANN and SVM both achieved 100% accuracy over Dataset-2. To compare
with this, if we observe the performance (mentioned in Tables 7 and 8) of the considered
classifiers of our proposed approach, it is observed that each classifier achieved an accuracy
between 99.37 and 100%, F1 Score between 99.38 and 100% and MCC between 98.75 to
100% over Dataset-2.

In another published work, a similar approach has been reported by Duo Chen
et al. [8] where several statistical and morphological features have been considered from
DWT coefficients for seizure detection over Dataset-1 (multi-channel) and Dataset-2 (single
channel). In [8], the authors have claimed that SVM with RBF kernel achieved an overall
maximum accuracy of 92.30% and 99.33% over Dataset-1 and Dataset-2, respectively. On
the other hand, our proposed approach achieved the highest accuracy and F1 score and
MCC of 94.28%, 94.73% and 89.11%, respectively, over Dataset-1. Moreover, our proposed
approach achieved better performance in terms of accuracy between 99.37 and 100%,
F1 Score between 99.38 and 100% and MCC between 98.75 and 100% over the Dataset-2.
Other than DWT or any wavelet-based decomposition techniques, EMD has been used by
many researchers for seizure detection. An EMD-based seizure detection approach has
been suggested by Kaleem Muhammad et al. [10], and the authors have claimed that the
SVM classifier achieved an accuracy of 92.91% over projection coefficient value features
from Dataset-1. On the other hand, our proposed approach with the bagging classifier
achieved an accuracy of 94.28%, F1 score of 94.73% and MCC of 89.11% over Dataset-1.

In another proposed study by Wijayanto Inung et al. [12], EMD and coarse-grained
(CG) EMDs have been applied to seizure detection over Dataset-2. In [12], the authors
have claimed that KNN, RF and SVM classifiers achieved an accuracy of 99%, 99% and
100%, respectively, over Dataset-2. On the same dataset (i.e., Dataset-2), our proposed
approach with classifiers SVM, SVM-RBF, decision tree and bagging classifier achieved
an accuracy of 99.37%, 100%, 99.58% and 100%, respectively. Another seizure detection
approach has been proposed by Asmat Zahra et al. [13], where MEMD using Hilbert
transform has been applied for feature extraction. In [13], the authors have claimed that
the proposed approach with ANN achieved an accuracy of 87.20% over Dataset-2. On
the other hand, our proposed approach achieved the lowest accuracy of 99.37% by SVM
and the highest accuracy of 100% by bagging classifier over Dataset-2. Moreover, we have
studied and considered the work proposed by C. Shahnaz et al. [14], Shaik. Jakeer Hussain
et al. [15] and Marzhan Bekbalanova et al. [17] for comparison (in terms of seizure detection
performance) with our work. In [14], the authors have used EMD-wavelet analysis over
Dataset-2 and extracted variance, skewness and kurtosis features for seizure detection. The
authors of [14] mentioned that the proposed approach with KNN achieved an accuracy
of 100% over Dataset-2 (which is a single channel), but the multi-channel EEG dataset has
not been tested using their proposed approach. In our proposed work, we have tested four
classifiers over Dataset-1 (multi-channel) and Dataset-2 (single channel), and we achieved
the highest accuracy of 94.28% by bagging classifier and 100% SVM-RBF and bagging
classifier over the two datasets, respectively. In [15], another seizure detection approach
has been proposed by using DWT and EMD decomposition techniques, where the mean
weighted frequency feature has been extracted individually from DWT coefficients and
EMD IMFs. The authors of [15] have mentioned that their proposed approach with ANN
achieved an accuracy of 91.85% (using DWT) and 92.27% (using EMD) for multi subject
over Dataset-1. On the other hand, our proposed approach achieved an accuracy of 94.28%
with a good MCC of 89.11% by bagging classifier over Dataset-1. In another study, Marzhan
Bekbalanova et al. [17] utilized DWT and EMD for seizure detection over Dataset-2. In [17],
the authors have mentioned that they have extracted features (mean, variance, skewness
and kurtosis) from DWT coefficients and EMD IMFs individually. The authors of [17] have
used SVN, KNN and decision tree classifiers and achieved an accuracy of 99%, 97.5% and
100% over DWT-based features and 100%, 100% and 96.25% over EMD-based features. On
the other hand, our proposed approach achieved an accuracy of 99.37% by SVM, 100%
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by SVM-RBF, 99.58% by DT and 100% by bagging classifier over Dataset-2. Therefore,
from Table 8, it has been observed that most of the studies [4,7,8,12–14,19] used DWT or
EMD or DWT with EMD over Dataset-2 (single-channel EEG dataset) and reported seizure
detection performance.

Moreover, a few of the studies [8,10,15] used multi-channel EEG data, but DWT
coefficient-based features and EMD-IMF-based features have not been concatenated for
both Dataset-1 and Dataset-2. In our study, we have used both single channel EEG datasets
(Dataset-2) as well as multi-channel EEG dataset (Dataset-1) to understand the usability
of our proposed approach. We observed that our proposed approach helps to improve
seizure detection accuracy over the multi-channel EEG dataset and over the single-channel
dataset. Moreover, the use of DWT or EMD individually over signal channel EEG data
produces good and acceptable seizure detection accuracies. Thus, there is no compulsion in
performing concatenation of DWT-coefficient features and EMD-IMFs features for seizure
detection over single-channel EEG data if the data are already producing high detection
performances when using only DWT or EMD techniques. However, our proposed approach
achieved improved performance over Dataset-2. In the case of the multi-channel EEG
dataset, it is better to consider our proposed approach because it demonstrates improved
performance for all four classifiers with respect to the existing state-of-the art approaches
over Dataset-1. Therefore, from Table 8, we can understand the usability of our proposed
approach for seizure detection over single and multi-channel EEG signals.

However, this study has the following limitations: (1) The EMD mode mixing problem
has not considered; and (2) the proposed approach has less impact on improving the results
over single-channel EEG data.
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Table 8. Comparison with existing approaches.

Proposed by Decomposition
Methods

Methods for Feature Extraction
from Coefficients/IMFs

Feature Concatenation from
Decompositions Methods Datasets Classifiers

Performance

ACC (%) F1 Score (%) MCC (%)

Vipin Gupta
et al. [4] FAWT Cross correntropy, log energy

entropy, SURE
No (Single Decomposition

method used)
Dataset-2 (single

channel) LS-SVM, KNN 94.41, 93.80 - 89, 88

Anurag
Nishad et al.

[19]
TQWT Cross-information potential No (Single Decomposition

method used)
Dataset-2 (single

channel) RF 99 - -

Mehdi
Omidvar
et al. [7]

DWT

Standard deviation, mean,
band power, Hjorth mobility,
Hjorth complexity, Shannon
entropy, log-energy entropy,

maximum, kurtosis, skewness
and median

No (Single Decomposition
method used)

Dataset-2 (single
channel) ANN, SVM 100, 100 - -

Duo Chen
et al. [8] DWT

Max, min, mean, standard
deviation, skewness, kurtosis,
Energy, normalized standard

deviation and normalized energy

No (Single Decomposition
method used)

Dataset-1
(multi-channel)

And
Dataset-2 (single

channel)

SVM with RBF
kernel

92.30 and
99.33 (overall

accuracy
over Dataset-

1 and
Dataset-2,

respectively)

- -

Muhammad
Kaleem et al.

[10]
EMD Projection coefficients value (for

details refer [10])
No (Single Decomposition

method used)
Dataset-1

(multi-channel) SVM 92.91 - -

Inung
Wijayanto
et al. [12]

EMD,
coarse-grained

(CG)

Fractal Dimension from EMD
and CG

No (extracted features
individually fed into

classifiers)

Dataset-2 (single
channel)

KNN, RF and
SVM

99, 99 and
100 - -

Asmat Zahra
et al. [13] MEMD

Instantaneous frequency and
amplitude extracted using

Hilbert transfor

No (Single Decomposition
method used)

Dataset-2 (single
channel) ANN 87.20 - -

C. Shahnaz
et al. [14]

EMD-Wavelet
Analysis

DWT applied over IMFs and
after that variance, skewness and

kurtosis extracted from level
4 DWT coefficients

Partially (but different from
our proposed work)

Dataset-2 (single
channel) KNN 100 - -
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Table 8. Cont.

Proposed by Decomposition
Methods

Methods for Feature Extraction
from Coefficients/IMFs

Feature Concatenation from
Decompositions Methods Datasets Classifiers

Performance

ACC (%) F1 Score (%) MCC (%)

Shaik. Jakeer
Hussain et al.

[15]
DWT and EMD Mean weighted frequency No (two ecomposition

methods used separately)
Dataset-1

(multi-channel) ANN 97.18 - -

Marzhan
Bekbalanova

et al. [17]
DWT and EMD Mean, variance, skewness and

kurtosis
No (two Decomposition

methods used separately)
Dataset-2 (single

channel)
SVN, KNN and

decision tree

DWT: 99,
97.5, 100

EMD: 100,
100, 96.25

- -

Proposed DWT and EMD

Mean, variance, standard
deviation, curve length,

skewness, kurtosis, minima and
rms

DWT coefficient-based
feature matrix and EMD

IMF-based feature matrix has
been concatenated

Dataset-1
(multi-Channel)

SVM, SVM-RBF,
decision tree,

bagging classifier

91.42, 91.42,
91.42, 94.28

91.42, 90.32,
92.30, 94.73

83.00,
82.78,
84.01,
89.11

Dataset-2 (single
Channel)

SVM, SVM-RBF,
decision tree,

bagging classifier

99.37, 100,
99.58, 100

99.38, 100,
99.56,
100

98.75,
100,

99.16,
100
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4. Conclusions with Feature Scope

In this paper, an approach based on DWT-coefficient features and EMD-IMFs feature
concatenation has been proposed for ictal and non-ictal classification over single and
multi-channel EEG signals. A DWT-coefficients and EMD-IMF-feature-based concatenated
input features matrix has been constructed by concatenation of the features extracted from
six DWT-coefficients and five EMD-IMFs. Three cases have been taken into account in
order to understand the usability of the proposed approach. Four classifiers (SVM, SVM-
RBF, decision tree and bagging classifier) have been used in order to check uniformity in
classification performance over the concatenated input features matrix. The performance
of the proposed approach has shown improved and better classification performance than
existing suitable approaches. Specifically, the performance of the proposed approach is
as follows: SVM achieved 91.42% accuracy, 91.42% F1 Score and 83.00% MCC; SVM-RBF
achieved 91.42% accuracy, 90.32% F1 Score and 82.78% MCC; decision tree achieved 91.42%
accuracy, 92.30% F1 Score and 84.01% MCC; bagging classifier achieved 94.28% accuracy,
94.73% F1 Score and 89.11% MCC for Dataset-1 (Multi-Channel) and for Dataset-2 (Single-
Channel); SVM achieved 99.37% accuracy, 99.38% F1 Score and 98.75% MCC; SVM-RBF
achieved 100% accuracy, 100% F1 Score and 100% MCC; decision tree achieved 99.58%
accuracy, 99.56% F1 Score and 99.16% MCC; and bagging classifier achieved 100% accuracy,
100% F1 Score and 100% MCC. However, from Tables 2, 4 and 6, we can say the proposed
approach is more suitable for long-term multi-channel EEG data. A detailed comparison
with state-of-the-art approaches has been shown in Table 8. The comparison shows that the
proposed approach has effective usability in seizure detection (more specifically, ictal and
non-ictal classification) over single and multi-channel EEG signals. This proposed approach
can be utilized for motor imagery, autisms, Alzheimer’s and schizophrenia detection using
EEG signals.
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Nomenclature
EEG Electroencephalogram
DWT Discrete wavelet transform
DCT Discrete cosine transform
EMD Empirical mode decomposition
IMF Intrinsic mode functions
SVM Support vector machine
RBF Radial Basis Function
TQWT Tunable-Q wavelet transforms
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FAWT Flexible analytic wavelet transform
RMS Root mean square
MCC Matthews correlation coefficient
AC Approximate coefficient
DC Detailed coefficient
SOTA State of the art
KNN k-nearest neighbors algorithm
ANN Artificial neural network
RF Random Forest Classifier
DT Decision Tree Classifier
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