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Abstract
The objective of this study is to propose an approach to detect Seizure and Non-Seizure
phenomenon from the highly inconsistent and non-linear EEG signals. In the view of
performing cross-subject classification over the inconsistency and non-linear characteris-
tics of EEG signals, we have proposed a fine-tuned Capsule Neural Network (CapsNet)
based approach to classify the seizure and non-seizure EEG signals through subject
specific and cross-subject training and testing. In this experiment, first we have normal-
ized the input data using L2 normalization technique. In the second step, the normalized
data have been given to the CapsNet and model level fine-tuning has been carried out. In
addition to this, we have performed seizure and non-seizure classification performance
evaluation using three more classifiers such as Decision Tree, Logistic Regression,
Convolutional Neural Network to compare with the performance of the proposed ap-
proach. To estimate the effectiveness of the proposed approach, subject specific and
cross-subject training and testing have been performed. In both experiments, we have
used multi-channel and single channel EEG datasets. For subject specific experiment, the
proposed approach achieved a mean accuracy of 93.50% over the dataset-1 (multi-
channel) and an accuracy of 82.61% for dataset-2 (single channel). For cross-subject
experiment, the proposed approach achieved a highest mean accuracy of 86.41% over the
dataset-1(multi-channel) and a mean accuracy of 48.45% over the dataset-2 (single
channel) which shows an advantage of CapsNet in a certain data scenario as described
in result section. Overall performance of the proposed approach shown a comparable
improvement over the existing approaches.

Multimedia Tools and Applications
https://doi.org/10.1007/s11042-023-14995-w

* Gopal Chandra Jana
go.gopal.ch.jana@gmail.com

1 Interactive Technologies & Multimedia Research Lab, Department of Information Technology,
Indian Institute of Information Technology – Allahabad, Prayagraj, UP 211015, India

2 School of Computer Engineering, KIIT Deemed to be University, Bhubaneswar, Odisha 751024,
India

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-023-14995-w&domain=pdf
http://orcid.org/0000-0003-2793-1721
mailto:go.gopal.ch.jana@gmail.com


Keywords Electroencephalogram (EEG) . Cross-subject seizure detection . Capsule neural
network . Decision tree . Logistic regression . Convolutional neural network

1 Introduction

A seizure occurs when there is an abnormal electrical discharge in the human brain, where
Epilepsy is defined as having continuing seizures [13]. More specifically, Epilepsy is a
medical condition where some disorder occurs in the neurological level of the brain by some
sudden changes of electrical activity in neurons. The result in increasing the electrical activity
may result in violent body shakes or sometimes a simple staring spell which may not be
noticed. Some physical changes like headache, nausea or some other stomach problems like
rising feelings from stomach to throat, tingling in some part of the body occur [19]. According
to the affected region of the brain, epilepsy can be classified into two types namely focal and
generalized epilepsy. Abnormal EEG of focal epilepsy is in a specific area whereas abnormal
EEG in generalized epilepsy is in the entire area. We can localize abnormal regions of the brain
by analyzing the EEG data thus seizure detection is important for the treatment of epilepsy
[45]. Epilepsy is the most common disorder and affects approximately 1% of the world
population [18].

Electroencephalogram (EEG) technique enables us to record neural level activity of our
brain [34]. As compare to (ECoG), EEG technique is a non-intrusive method because
electrodes are directly placed on the scalp of a subject to acquire the temporal and spatial
information of the brain [47]. Generally, EEG test is the recording of brain electrical activity. It
can be classified into two types namely scalp and intracranial EEG [9, 47]. Scalp EEG is the
recording when electrodes are attached to the scalp and intracranial EEG is the recording of
implanting electrodes in the brain during a surgery [9, 47]. Scalp EEG data is commonly used
because it is easy to observe than intracranial EEG data although it consists of noise from the
scalp and many other external factors that can interfere with seizure detection [9, 47].

A person’s brain activity changes when he has an epileptic seizure [15]. This change is
known as epileptiform brain activity and can be seen in the EEG recordings [15]. EEG signals
have both nonlinear and non-stationary properties that’s why they are very complex so in order
to perform classification, we should reduce the complexity of signals by normalizing, reducing
dimension or channels [20, 32].

In the field of EEG signal analysis, various techniques have been presented for seizure
detection using widely known machine learning approaches, some of the approaches using
Decision Tree (DT), Logistic Regression (LR), and Convolutional Neural Network (CNN) are
mentioned as follows to understand the impact of the present study. In the aspect of the
Decision Tree (DT) classification techniques, we have surveyed few papers where DT
technique has been considered for seizure detection. In [42] authors have introduced the
concepts of asynchronous tree by implementing gradient boosted trees with the help of DT
technique to propose an efficient hardware architecture for biomedical applications. Authors
have mentioned that the proposed architecture has been tested for automated seizure detection
and achieved an average F1 score of 99.23% and 87.86% with an average detection latency of
1.1 s over the random and block-wise splitting of data into train/test sets. In the detection of
epileptic seizure, EEG signal features and robust machine learning techniques are very
important. With a similar view, in [28] authors have used time and frequency domain feature
extraction techniques to extracted the valuable information from EEG data. Authors have
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considered K-nearest neighbors (KNN), Decision Trees (DT) and Support Vector Machine
(SVM) with a linear kernel to compare the seizure detection performance and robustness of
these classification techniques. Author mentioned that the DT based classification technique
achieved an overall accuracy of 98.5% and SVM achieved the highest performance with an
overall accuracy of 99.0%. Time-frequency analysis and feature extraction have been fre-
quently utilized in several seizure detection approaches. As like in [10], authors have used
Discrete Wavelet Transform (DWT) to analyze and select the informative EEG sub-bands
from the input EEG data. Over the selected sub-bands authors have construct a fuzzy
membership function and after that they applied several techniques like associative Petri net
(APN), Decision Tree, Support Vector Machine, Neural Network, Bayes net, naive Bayes, and
tree augmented naive Bayes for the diagnosis of epilepsy. Authors have claimed that the
associative Petri net (APN) achieved diagnosis accuracy rates of 93.8%. Other than DWT
based sub-bands selection, some other decomposition based approaches have been frequently
used in seizure detection. A Dynamic Mode Decomposition (DMD) based seizure detection
approach has been proposed in [43], where the authors mentioned that the Random
Undersampling Boosting (RUSBoost) decision trees achieved the highest performance in
seizure detection. Other than signal decomposition based approaches, signal transformation
domain (time domain to frequency domain and its vice versa) analysis has been frequently
used to propose seizure detection approach. In [36] authors have used Fast Fourier Transform
(FFT) for extracting time domain features from the input EEG signals and applied decision tree
classifier for seizure detection. Authors have claimed that the proposed approach achieved
classification accuracies of 98.68% and 98.72% using 5- and 10-fold cross-validation.

In the aspect of Logistic Regression (LR) classification techniques, we have surveyed few
papers where LR technique has been considered for seizure detection. In [48], authors have
used Logistic Regression model to propose an automated detection approach for postictal
generalized EEG Seizure. Similarly, in [8] a technique has been presented for automatic
diagnosis of an epileptic seizure where Logistic Regression has been tested with the proposed
approach and other four classifiers. Authors have mentioned that first they have applied
discrete wavelet transform (DWT) for sub-band selection from EEG signals and after then
they have extracted entropy based nonlinear dynamic features from the selected sub-band.
Finally, authors have fed the extracted features into six classifiers namely, logistic regression,
random forest, K-nearest neighbors, linear discriminant analysis, Naive Bayes classifier, and
least square support vector machine (LS-SVM) to execute the classification task. Authors have
claimed that the proposed approach with LS-SVM has achieved an accuracy of 99.50%,
specificity of 99.40% and a sensitivity of 100.00%, whereas proposed approach with logistic
regression achieved an accuracy of 99.00%, specificity of 98.00% and a sensitivity of 100.00%
which is also acceptable.

Other than automated detection approach, a simple Epileptic Seizure classification ap-
proach has suggested in [30] using time-frequency analysis of the EEG signal. In this
experiment author have mentioned that they have used multiscale radial basis functions
(MRBF) and a modified particle swarm optimization (MPSO) to enhance the time-
frequency data. Finally, an enhanced time-frequency data given into five types of classifiers
where Logistic Regression is one of them and performance have been estimated for seizure
and non-seizure signal classification. Authors have claimed that the proposed approach with
SVM achieved 100% accuracy whereas Logistic Regression achieved 98.00% which is also
acceptable performance for seizure detection. Other than with optimization techniques, Logis-
tic Regression has used directly in seizure detection over some feature of EEG signals data. In
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[39], a Denoising Sparse Autoencoder (DSA) based seizure detection approach has been
proposed, where authors have mentioned that the DSA has been trained over the preprocessed
EEG data and after then Logistic Regression model has been used on the top layer of DSA to
perform the seizure detection task. Author claimed that the proposed approach achieved an
average sensitivity of 100%, specificity of 100%, and recognition of 100% after some post-
processed. In the similar fashion, Logistic Regression technique has been directly applied to
proposed a seizure detection approach which is described in [46], where authors have used
lifting-based discrete wavelet transform (LBDWT) to extract coefficients from the EEG signal.
Finally, authors have fed the extracted features into the Logistic Regression and multilayer
perceptron neural network (MLPNN) classification model to perform the classification task.
Author claimed that the proposed approach with MLPNN has achieved an area under a ROC-
AUC curve value of 0.902, specificity of 92.3% and a sensitivity of 92.8% whereas proposed
approach with Logistic Regression has achieved an area under a ROC-AUC curve value of
0.853, specificity of 90.3% and a sensitivity of 89.2%.

The above mentioned approaches are based on the feature extraction and uses traditional
machine learning approaches. Now a days, several automated feature extraction and process-
ing techniques have been enabled in advanced machine learning techniques with the help of
convolution techniques. For example, in [1] an automatic Seizure detection approach has been
proposed using Deep Learning, where authors claimed that their approach has minimal
involvement in EEG signals pre-processing and it has automatic feature learning capabilities.
So, advance machine learning reduces the involvement of traditional features extraction
process and has been applied for seizure detection with some data preprocessing techniques.

In the aspect of Convolutional Neural Network (CNN) based classification techniques, we
have surveyed few papers where CNN technique has been considered for seizure detection. In
[35], an image-based seizure detection approach has been proposed where the authors have
mentioned that they have used 3D Convolutional Neural Networks. Authors have claimed that
the proposed approach achieved a sensitivity of 85.7%, a false prediction rate of 0.096/h. Instead
of image-based techniques, a Multi-View Convolutional Neural Networks has been used in [31]
to propose seizure detection approach. Where authors have mentioned that they have considered
the time domain and frequency domain features of EEG signals to deliberate two types of view of
the input data. After time domain and frequency domain preprocessing authors have fed the data
into their proposed Multi-View Convolutional Neural Network framework to detection the
occurrence of seizure in epileptic EEG data. Authors have claimed that the proposed approach
achieved an average area under the curve (AUCs) value of 0.82 and 0.89 over two subject’s EEG
data. Another seizure detection approach has been proposed in [17], where authors have used
plot EEG images for seizure detection. In this approach authors have mentioned that they have
used some preprocessing steps over the EEG data, in this step they have done segmentation
process using a time window technique and after then the segmented data have been converted
into plot EEG images. Processed plot EEG images have been given into the Convolutional
Neural Network (CNN) for seizure and Non-Seizure classification. Authors have claimed that
the proposed approach with CNN achieved a 100% of median seizure detection rate by minutes.
Similarly, another approach based on spectrographic images of EEG and CNN has suggested in
[51] to detect seizure from EEG signals. In this approach, authors have first converted the
individual subject’s EEG signals data into spectrograms. After then the spectrograms have been
segmented into 26,380 total images using a windowing technique. Finally, authors have uses
CNN based on VGG-net architecture for seizure and Non-seizure classification. Authors have
claimed that the proposed approach achieved a seizure detection sensitivity and specificity of
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greater than 90%. In the similarly fashion, in [29] a seizure detection approach based on
spectrograms and 1D-CNN has been proposed. Authors have claimed that the proposed
approach achieved an average accuracy 77.57% along with a 4.74 average positive likelihood
ratio and 0.32 average negative likelihood ratio.

In the aspect of a computer-aided diagnosis an approach based on CNN has been proposed
in [2], where authors have mentioned that they have uses 13-layer deep convolutional neural
network to detect preictal, normal, and seizure classes in epileptic EEG signals. The authors of
[2] have claimed that the proposed approach achieved an accuracy of 88.67%, a specificity
90.00%, and a sensitivity of 95.00%. In the view of designing hardware-friendly seizure
detection framework an Integer Convolutional Neural Network based seizure detection ap-
proach has been presented in [50]. The authors of [50] have claimed that the proposed
approach has only 2% drop of accuracy.

In above descriptions, we have mentioned several seizure detection approaches based on
Decision Tree (DT), Logistic Regression (LR) which are combined with features extraction
techniques to propose seizure detection approach, whereas Convolutional Neural Network
(CNN) based approaches are without involvement of traditional features extraction techniques.
On the other hand, input EEG signal highly inconsistent and nonlinear in nature which leads
massive impact on the classification models. In above literature, inconsistency and nonlinearity
of EEG signals aren’t been considered as they are used Decision Tree (DT), Logistic
Regression (LR) and Convolutional Neural Network (CNN). Instead of DT and LR, CNN
has now more popular in seizure detection but CNN has few issues with EEG data which are:
CNN takes a lot of data to generalize as it has to learn different filters for each different
viewpoints and CNN are Translation Invariant means ConvNets are unable to identify one
object ‘s location with respect to another [22]. In the view of mentioned issues, research
community has considering capsule neural network (CapsNet). CapsNet is more robust to
change data orientation and size which is one of the most important aspects of seizure
detection with inconsistent EEG signals and it has needed much less data and internal
representation to classify the occurrence classes [41].

Research community accepts advancement in CapsNets and uses in several areas of EEG
signal analysis. We have found few papers in which CapsNets has been used for different types
of classification. In the aspect of CapsNets, we found few research papers where CapsNet has
been used in Emotion Recognition and Motor Imagery classification through EEG signals. In
[26], an approach has been proposed using CapsNet for motor imagery classification. The
authors of [26] have mentioned that first they have used short-time Fourier transform (STFT)
to convert EEG signal data into 2D images. Finally, 2D images have been fed into the CapsNet
for the motor imagery classification. Authors have claimed that the proposed approach achieved
an average accuracy of 78.44%. Similarly, in [24] an approach has been proposed using CapsNet
for Emotion Recognition. In this experiment author has extracted granger causality feature from
the original EEG signals. After then they have made a subset of high relevance features by using
sparse group lasso algorithm. Finally, high relevance features set has been fed into the CapsNet
to perform emotion classification. In the similar fashion, an approach for emotion recognition has
been proposed in [6] where the authors have extracted power spectral density (PSD) from
original EEG signal as a frequency domain features. In the next step, PSD of each channel has
been categorized into four parts theta, alpha, beta and gamma, after then a multiband feature
matrix (MFM) has been generated. Finally, the MFM is given into the CapsNet for emotion
recognition. The authors of [6] have claimed that the proposed approach achieved an average
recognition accuracy of 68.28%.
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After literature review, we found electroencephalogram (EEG) is highly inconsistent in
nature, even EEG has recorded from the same person, are not consistent and can be signifi-
cantly different. In this particular, classification model probably compromised with the
performance in seizure detection in epileptic EEG data. To give a better result in terms of
accuracy, CNN trains on all the possible combination of input data by using image augmen-
tation technique, where Capsule Neural Network does not need all the combinations of data.
CNN uses Max-pooling, which loses spatial information by reducing spatial resolution,
Capsule Neural Networks use Dynamic Routing in layers to pass the information from one
layer to the next layer Particularly, so CNN based architectures other than CapsNets has
compromised classification accuracy when target data are significantly different.

The main motivation and contribution of this work are to use the Capsule Neural Network
(CapsNet) to study the subject specific and cross-subject seizure detection performance over
the inconsistent behavior of EEG signals. In the experiment first, we normalize the data using
L2 normalization, then pass the data into our proposed CapsNet model. In this experiment we
have used two datasets from which one is multi-channel (CHB-MIT Scalp EEG dataset [7])
and the other one is a single channel (University of Bonn EEG dataset [14]) EEG dataset. The
subject specific and cross-subject seizure detection performance of the proposed approach has
been evaluated and compares with traditional (DT and RL) and deep learning (CNN) based
classification models. More specifically we highlighted on 1) CapsNet based approach with
dynamic routing has been investigated for Seizure detection. 2) Subject specific and cross-
subject training and testing have been performed to check the robustness of the proposed
approach. 3) Single and Multi-channel both datasets have been considered for this experiment.
4) Also, performances of different classifiers were estimated for seizure detection and
compared.

Significance of this work After performing review of the related work, it has been found that
a recent work which is based on preictal and inter-ictal EEG signals classification using 1D-
CapsNet [49]. But in [49], all EEG channels have not been used for classification and also has
not been studied cross-subject training and testing which is our main objective in the study. In
our present study, we studied cross-subject as well as subject specific seizure and non-seizure
classification experiment by considering all EEG channels of the multi-channel dataset and a
single channel dataset separately. So, this study is equally a value addition with respect to the
existing related work.

This present study has been presented using five major sections: Section 2 describes
Materials and Methods which are used in the present study, Section 3 describes the Proposed
CapsNet based Seizure Detection Approach, Section 4 describes the Results and Discussion of
the proposed approach, Section 5 shows a comparison with other Schemes and Section 6
Concludes this present study with the aim of extending future scope of this work.

2 Materials and methods

In this section we have described the experimental datasets and technical background of
this experiment. Subsection 2.1 describes the experimental datasets, subsection 2.2
describes the input data preprocessing approaches and subsection 2.3 describes the
classification techniques which are used to propose the present approach and compare
the classification performance.
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2.1 Experimental datasets

There are various trial EEG datasets available with different research groups which can be used
in seizure detection. In this experiment, we have tested our proposed approach over the two
benchmark datasets. Dataset-1 [7] is a multi-channel EEG dataset taken from the CHB-MIT
scalp EEG dataset and Dataset-2 [14] is a single channel EEG dataset taken from the
University of Bonn EEG dataset. More detailed descriptions about the dataset mentioned in
subsections 2.1.1 and subsection 2.1.2.

2.1.1 Dataset-1

Dataset-1 has been taken from CHB-MIT Scalp EEG dataset [7] which is multi-channel and
massively appreciated and used by the epileptic seizure analysis research community. As per
data description, this EEG recordings were collected from 22 subjects and grouped into 23
cases (chb01, chb02… and so on). This dataset is of 17 females of age 1.5 to 19 years and 5
males of age around 3 to 22 years. The sampling frequency of all the recordings was 256 Hz.
The duration and number of seizure events varied from each subject. A total of 25 electrodes
were used for each subject in the dataset but they varied from 23 to 28 electrodes and depended
on the subject, where 18 electrodes are common to everyone. Detailed information is available
on [7], out of 23 cases, we used the data of first five cases to test the propose approach. EEG
signal data of 23 channels from the first case (chb01_03) has been plotted and shown in Fig. 1,
where ch represent the channel.

2.1.2 Dataset-2

Dataset-2 has been taken from the University of Bonn EEG dataset [3, 14]. A summary of the
dataset is given in Table 1. This time series data is under a spectral bandwidth of 0.5 Hz to
85 Hz. This dataset is obtained from five sets (A to E) which are prepared from the EEG
recordings of five subjects. For each set, dataset contain 100 single channel EEG recordings.
Each recording of the EEG signal is of time duration of 23.6 seconds and sampling rate of

Fig. 1 EEG signals of all channels from Chb01_03
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173.61 Hz. The normal dataset (Set A and B) has signals of healthy subjects and contains 100
cases. Inter-ictal datasets (Set C and Set D) have EEG signals of five epileptic subjects when
they did not have seizure intervals. Particularly Set C EEG data from within the epileptogenic
zone and Set D EEG data the hippocampal formation of the opposite hemisphere of the brain
[3]. The Ictal dataset (Set E) contains 100 cases with the same number of subjects who had
epilepsy with active seizure intervals. Signals with seizure (ictal) and seizure-free (non-ictal)
from the Dataset-2 are presented in Fig. 2.

2.2 Input data preprocessing

In this section we have described the experimental data preprocessing strategy that has been
followed in this present study for both experimental datasets.

2.2.1 Preprocessing over Dataset-1

Dataset-1: the EEG signals taken from CHB-MIT scalp EEG dataset [7] are in European data
format (.edf). Time references for the duration of seizures are available within the dataset
summary. Based on the summary, first for each subject all the seizure data have been trimmed
out from the files (.edf) and converted into CSV format. Similarly, for each subject, all the non-
seizure data have been trimmed out and converted into CSV format. Then label with 0
representing non-seizure data is added to the CSV file. Then corresponding label with 1

Table 1 Dataset folder description of University of Bonn EEG dataset

Data folder A Data folder B Data folder C Data folder D Data folder E

Non-Epileptic
EEG Data

Non-Epileptic
EEG Data

Epileptic EEG Data
(Recorded from
epileptogenic zone)

Epileptic EEG Data (Recorded
with hippocampal
formation of the opposite
hemisphere of the brain)

Epileptic EEG Data

With Eye
Opened

With Eye
Closed

Inter-ictal
(Non-Seizure)
Stage

Inter-ictal (Non-Seizure) Stage Ictal (Seizure) Stage

Fig. 2 Seizure (ictal) vs Seizure-free (non-ictal) EEG signals from Dataset-2, signals amplitude is in uV
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representing seizure data is added for seizure. The resulting data were normalized using the L2
normalization technique and then split into training and testing data. Normalized data have
been fed into the proposed approach. We observed by feeding normalized data into CapsNet
that total loss (Eq. 12) of the model has been reduced. EEG signal data distribution of subject-1
of Datatset-1 has been shown in Fig. 3 after normalization process.

2.2.2 Preprocessing over dataset 2

Dataset-2 from the University of Bonn, Germany [14] is also used in this study. We have
considered eye-opened non-epileptic data and Ictal epileptic data in this present study for
seizure detection. Considered single channel time series data has been divided into 173
segments each of 1 sec as the EEG signal sampling rate is 173.61 Hz (we haven’t considered
remining fraction), then we normalized the data using L2 normalization. After performing
normalization process, we have plotted the EEG signal data from data folder E which has been
shown in Fig. 4. As showed in Fig. 4, there are not many changes in the distribution after
normalization, as we used Euclidean norm to normalized the data.

2.3 Background

Logistic regression Logistic regression [12] is the most-simplest and statistical based machine
learning algorithm which is based on sigmoid function and its outcome is related to explan-
atory variables. Sigmoid function in a S-shaped function that can take a real value and map it
in the range of 0 to 1. Logistic regression is easy to implement and easy to train. Generally,
seizure detection in epileptic EEG signal can be viewed as a binary classification such as
seizure denoted as class 1 and seizure free denoted as class 0. Mathematically, logistic
regression can be written with a probability (P) of input m and parameter δ.

P njm; δð Þ ¼ f δ mð Þn 1− f δ mð Þð Þ1−n ð1Þ

Where, n denotes the label and n ∈ (0 or 1), and f δ xð Þ ¼ eδ
T m

1þeδT m:

Fig. 3 EEG data distribution before and after normalization of seizure data. Subject-1 EEG data has been
considered in this plot; different color indicates signals of the different channels
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The main purpose of training logistic regression is to generate the optimal parameter δ with
the training data by minimizing the log likelihood function mentioned below in Eq. 2.

L δð Þ ¼ −
1

s
∑s

i¼1yilog f δ mið Þ þ 1−nið Þlog 1− f δ mið Þð Þ ð2Þ

With the gradient descent method:

∂
∂δ

L δð Þ ¼ ∑s
i¼1 yi−hδ mið Þð Þmi

jð Þ ð3Þ

At the time of obtaining the optimal δ, the predicted labels Pi could be gained by calculating
the posterior probability P(n| m, δ) as per Eq. 1. If P(n| m, δ) > 0.5 then m∈ class 1, otherwise
m ∈ class 0. This mathematical description of logistic regression has been taken from the
paper [39].

Decision tree classifier Decision tree uses predictive modeling approaches in statistics and
machine learning [40]. They perform classification without much estimation and they can
handle both continuous and categorical values. Decision tree is nothing but a complex and
nested if else statement. The whole dataset is fitted into 1 condition and split accordingly.
More specifically, Decision tree classifier find the similar pattern from the input dataset and
discriminate into different classes [28]. Mathematically, a Decision tree algorithm can be
represented using the following equations.

A ¼ A1;A2;A3;…Amf gT ð4Þ

Ai ¼ ai1; ai2; ai3;…aij;…ain
� � ð5Þ

B ¼ B1;B2;B3;…;Bi…Bmf g ð6Þ
The main purpose of Decision tree is to predict the observations of A. From A several Decision
tree can be constructed with different accuracy level [28]. Here, m denotes the available
observations number, n denote the independent variable number, S is the m − dimension

Fig. 4 Sample EEG Data distribution of Dataset-2 before and after performing L2 Normalization
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vector of the variable forecasted from A. Ai is the ith component of n − dimension autonomous
variables, ai1, ai2, ai3,…, ain are autonomous variable of pattern vector Xi and T is the transpose
notation.

Convolutional neural network (CNN) Convolutional neural network is an advance version of
a neural network which has convolutional operation instead of matrix multiplication in
minimum one of their rows. Basic CNN model can be configured with one input layer, one
output layer [21] and some hidden layer which consist of a chain of convolutional layers which
convolve with multiplication. For down sampling, CNN uses a pooling function which focuses
on important features but leaves the other features. So, feature loss is there in CNN with
pooling layers.

Capsule neural network The Capsule Neural Network (CapsNet) [21, 40] is an extended
version of CNN, as the cons of CNN is replaced by CapsNet. The pooling function by which
feature loss is happening, is replaced by dynamic routing algorithm [41] which preserves all
the features. A different activation function called Squash function [41] which is used in
CapsNet to extract the non-linear features. Due to these two main reasons (Dynamic routing
algorithm, squash function) the extra features such as rotation, position, angle, etc. can be
preserved which helps the model in good prediction. In addition to these, CapsNet does not
require a large amount of dataset. A summary of different input operation, output, and
semantic diagram of input to output process within CapsNet architecture w.r.t a traditional
neural network can be constructed from [16, 23, 27, 33, 41, 44] for understating the
advancement of CapsNet.

A capsule is nothing but a batch of neurons whose length states the probability and activity
vector which represents various properties of data such as rotation, position, direction,
thickness etc. [27, 41]. In CapsNet, dynamic routing by agreement algorithm is used instead
of max-pooling to achieve a reliable performance [41]. In addition to this, inverse rendering is
the method on which CapsNet actually works [27].

In CapsNet, parent capsule’s output is fed into the child capsule, and if the actual result of
parent capsule is matched with the predicted output of child capsule, then the coupling
coefficient increases. Let the output of the capsule i is ui, now the prediction of the parent
capsule j can be calculated using the Eq. 7.

cujji ¼ wijui ð7Þ
Where, Wij is a weight matrix. Now, we need to calculate coupling coefficient cij using the
softmax function with the help of Eq. 8.

cij ¼
exp pij

� �
∑kexp pikð Þ ð8Þ

Where, pij represent log prior probability for which capsule i coupled with parent capsule j and
at the beginning pij = 0. Therefore, input vector (sj) of capsule j (parent) can be calculated
using the Eq. 9.

s j ¼ ∑icij � cujji ð9Þ
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Now, output (vj) is estimated using a non-linear activation function namely squash function.
The relation between output and squash function has mentioned in Eq. 10.

v j ¼
s j

�� ��2
1þ s j

�� ��2 � s j

‖s j‖
ð10Þ

After applying the squash function, the entire probability can be expressed in a range of 0 to 1.
If capsule output is small, then it shrunk to zeros and if capsule output is large, it shrunk to one.
The log probabilities (pij) are updating through n routing iteration with following agreement.

xij ¼ v j � cujji ð11Þ
Finally, CapsNet total loss has been calculated using eq. 12,13 and 14 which are mentioned as
follows.

Total Loss ¼ Floss þ Rloss ð12Þ

Floss ¼ f lossmax 0; yþ− vkj jj jð Þ2 þ λ 1− f lossð Þmax 0; vkj jj j−y−ð Þ2 ð13Þ

Rloss ¼ 0:0005*Mean Square Error Reconstractedoutput−Original Input
� � ð14Þ

Where, Floss marginal of each class k, the y+ and y− are hyper parameters set to 0.9 and 0.1
respectively. λ is used to decrease the effect of loss on class labels which don’t belong to
correct class and has value 0.5. If input data matches with its corresponding label, then floss is 1
else it is 0. On the other hand, Rloss is the reconstruction loss where Reconstractedoutput indicate
the out of the decoder.

3 Proposed CapsNet based seizure detection approach

The proposed approach mainly contains three phases such as Phase1: Class level preprocess-
ing, Phases2: Input preprocessing, and Phase3: CapsNet configuration, training and testing
over the processed data. Each phase of the proposed approach has been shown in Fig. 5 and
described below:

3.1 Class level preprocessing

In this phase we prepare the experimental EEG data into two classes namely seizure and non-
seizure. The data preparation has been done for both the datasets (Dataset-1: multi-channel and
Dataset-2: single channel) with the help of source data descriptions and the time stamp
mentioned in the EEG recordings.

3.2 Input preprocessing (CapsNet input preprocessing)

In this phase data have been normalized and processed to feed into the CapsNet. Details of the
individual steps have been mentioned as follows.
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L2 normalization Input data have been normalized using normalize function [38]. In this
work, we have chosen L2 normalization which use Euclidian norm and doesn’t take additional
input parameter to normalized. Whereas in Z-score normalization, the data is normalized with
mean and standard deviation and gives us possible output likely to be gaussian distribution, but
gaussian distribution is not required in our case and in Min-Max normalization, it cannot
handle outliers, and prone to losing the information, also we have to provide a new min-max
value to normalize the data.

Data Split into training and testing For subjects specific training and testing, the data have
been divided into training and testing set in the ratio of 70:30. For cross subjects training and
testing, 70% of the data is used for training and 50% of data is used for testing. More
specifically, in cross subject training and testing session, training have been done over the
70% data of one subject and testing have been done over 50% data of another subject.

Batch size preparation Data have been divided into a batch size of 10 and after then data
have been given to the CapsNet model to perform the seizure detection task.

3.3 CapsNet configuration, training and testing

In this phase, we have configured the various entities of the CapsNet model to perform the
seizure detection task and to achieve robust detection performance. CapsNet configurations for
this experiment have been described as follows.

Primary capsule layer Primary capsule layer contains two convolutional layers. The input to
the first layer is a placeholder that will contain input data which we have fed at runtime. Over
the processed data, first we have applied a 1D convolutional layer with kernel size three and
sixty-four filters which gives the output in the shape of [batch_size,21,64]. After then we have
passed the output into another 1D convolutional layer with the same kernel size and filter but

Fig. 5 Illustration diagram of the proposed approach
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with stride of two which gives the output in the shape of [batch_size,10,64]. Here,
convolutional layer provides scaler output, but we need in vectors so we have done reshaping
it to get eighty maps of eight dimensions and then we have applied squash function to ensure
that their length is between 0 and 1.

Digit capsule This is the complex layer inside the CapsNet. In this experiment, we have
considered two digit capsule units, to estimate the probability of “0” and “1” where “0”
represent non-seizure and “1” represent seizure and both produce output of 16-dimension
vectors. First Step: The first step is to calculate the predicted output vectors. as the first and
second layer are fully connected to each other, so for all the pairs of the first and second layer,
we find the predicted output vectors. In this computation we have used a transformation matrix
W11 which has gradually been learned during training period. We multiplied the transformation
matrix with the output of the first layer capsule u1 ∣ 1 which is the estimated first digit capsule
output dependent on the first primary capsule output. Since primary capsule gives the output of
8-dimensional vector and digit capsule generate the output of 16-dimension vector, the
transformation matrix must be a 16*8 matrix. Next, we have predicted the second capsule
output which depends on the output of the first primary capsule using a different transforma-
tion matrixW12. Then we used a second primary capsule to estimate the output of the first digit
capsule and do the same for the second digit capsule. Finally, we have 140 predicted output
vectors.

Now we have a bunch of output vectors. Second step: in this we have applied routing by
agreement algorithm which is described in Algorithm. 1, it gives the output of the digit
capsule. In the routing algorithm, first we have initialized all routing weight to zero.

Algorithm. 1 Routing algorithm [41]

Second, we have applied the softmax function in each primary capsule. Third, with the help
of routing weights, we computed the predicted output vector for each of the digit capsule.
Fourth, we have applied the squash function over output of the third step so that all the length
bound between 0 and 1. This is only the first round of the routing algorithm, but we can run as
many rounds as we want. In this proposed approach, we have applied two rounds of this
algorithm. The output of this algorithm is the output of digit capsules.
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Length of the output vector of a capsule The length of each output vector estimates the
probability of seizure and non-seizure class. So, for computing the probability, we have used
norm function which is given in Eq. 15.

Sij jj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑i Si*Sið Þ þ ∈

p
ð15Þ

Where, ‖Si‖ is digit capsules output, and here ∈ is the small number when the output of digit
capsule is zero then we don’t get the length value zero. But the sum of probability doesn’t have
to add up to 1 because we have not used a softmax function.

Prediction For calculating the prediction, we have used argmax function which gives the
index of the highest probabilities and the index is itself a label. Then we have applied a
squeeze function to remove the extra dimensions from of argmax function and now we have a
configured capsule network that has been used to estimate seizure and non-seizure class
probabilities. Now, we have estimated detection performance of the CapsNet model by
comparing predictions with labels. To understanding the layer wise input and output of
CapsNet model, a summary of each layer has been shown in Table 2.

Loss For estimating total loss, we have calculated marginal loss and reconstruction loss. For
margin loss, we have applied the Eq. 13 described in section 3. For reconstruction loss, we
used the output of the digit capsule. First, we apply a mask before sending the output to the
decoder because digit capsule’s output must be masked out except for the one which relates to
the target digit. The shape of the mask is same as the output of digit capsule and it is equal to
zero all over except for the target digit location. The input to the decoder is the product of the
mask and digit capsule. Decoder is a regular feed forward neural network composed of three
fully connected layers. It outputs an array containing 23 values (for Dataset-1) and 173 values
(for Dataset-2) from 0 to 1. Now, we have computed the reconstruction loss by multiplying
0.0005 (scale down factor) with the mean square difference between reconstructions and input
using Eq. 14. The advantage of the scale down factor is that the reconstruction loss does not
dominate the marginal loss during training [41]. After then we have added margin and
reconstruction loss to compute the final loss of the CapsNet model. Then we do the training
operation by using an Adam optimizer to minimize loss. For the testing, we won’t have the
labels so masked the output vector using predicted classes rather than the labels. An illustration
diagram has been shown in Fig. 6 to understand the complete workflow of CapsNet with loss
calculation.

Table 2 Layer wise input and output shape of CapsNet Model

Layer Input shape Output shape

conv1d_1 layer [batch_size,23,1] [batch_size,21,64]
Conv1d_2 layer [batch_size,21,64] [batch_size,10,64]
Squash [batch_size,10,64] [batch_size,80,8]
Digit capsule layer [batch_size,80,8] [batch_size,1,2,16,1]
Length [batch_size,1,2,16,1] [batch_size1,2,1]
Prediction [batch_size1,2,1] [batch_size1]
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4 Result and discussion

In this experiment we have performed subject specific and cross subject training and testing
experiment to estimate the robustness of our proposed seizure detection approach. In subject
specific training and testing experiment, we have estimated the performances of Logistic
Regression (RL), Decision Tree (DT), CNN and our proposed CapsNet based approach which
is described in subsection 4.1. In Cross-subject training and testing experiment, we have
estimated the performance of our proposed CapsNet based approach which is described in
subsection 4.2. The performance of all classification models has been estimated using six
standard performance evaluation parameters (mathematically described in [25, 37]) namely

sensitivity ¼ TP

TPþ FN
;

specificity ¼ TN

TNþ FP
;

accuracy ¼ TPþ TN

TPþ TNþ FNþ FP


 �
;

Fig. 6 Illustration diagram of steps involves inside the CapsNet model with loss calculation
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F1 Score ¼ 2TP
2TP þ FPþ FNð Þ ;

AUC Score ¼ TP þ TNð Þ
TP þ TN þ FP þ FNð Þ ; and

False Positive Rate FPRð Þ ¼ FP
FP þ TN

:

Also, we have plotted ROC_AUC curve = True Positive Rate against False Positive Rate.
Where, True Positive (TP) is the number of truly detected seizures; False Negative (FN) is the
number of misclassified detected seizures; True Negative (TN) is the number of truly classified
non-seizures; False Positive (FP) is the number of misclassified detected non-seizures [4, 48].

4.1 Results of subject specific experiment

In subject specific training and testing experiment, first we classified seizure and non-seizure
EEG signals by considering traditional classification approaches using logistic regression and
decision tree. Second, we performed our classification task using CNN technique. In the
classification process, we have performed subject specific training and testing, and computed
the performances over the Dataset-1 [7] and Dataset-2 [14]. The results have been shown in
Tables 3 and 4, and It has been observed that for logistic regression achieved a mean accuracy
of 64.292%, a mean sensitivity of 63.886%, a mean specificity of 66.428%, a mean FPR of

Table 3 Subject specific estimated performance for five subjects of Dataset-1

Approaches Performance Evaluation
Parameter

Subject1 Subject2 Subject3 Subject4 Subject5 Mean
Performance

Logistic
Regression

Accuracy 75.49% 52.80% 60.0% 79.29% 53.88% 64.292%
sensitivity 72.22% 52.69% 59.81% 75.50% 54.21% 63.886%
specificity 79.80% 52.91% 60.28% 85.59% 53.56% 66.428%
FPR 0.2019 0.4708 0.3971 0.1540 0.4643 0.33762
AUC score 0.7601 0.5280 0.6005 0.8005 0.5388 0.64558
F1 score 0.7700 0.5294 0.6458 0.8097 0.5364 0.65826

Decision
tree

Accuracy 81.48% 80.44% 84.62% 78.04% 83.68% 81.652%
Sensitivity 82.95% 80.38% 85.71% 78.55% 82.19% 81.956%
Specificity 80.02% 80.50% 83.45% 78.04% 85.18% 81.438%
FPR 0.1997 0.1949 0.1654 0.2246 0.1481 0.18654
AUC score 0.8149 0.8044 0.8458 0.7804 0.8369 0.81648
F1 score 0.8167 0.8040 0.8528 0.7832 0.8351 0.81836

CNN Accuracy 89.44% 85.91% 92.61% 89.56% 90.50% 89.604%
Sensitivity 92.58% 82.84% 92.29% 88.58% 88.69% 88.996%
Specificity 86.33% 88.90% 92.96% 90.55% 92.02% 90.152%
FPR 0.1336 0.1102 0.0703 0.0944 0.0797 0.09818
AUC score 0.8946 0.8590 0.9263 0.8957 0.9035 0.89582
F1 score 0.8972 0.8544 0.9285 0.8955 0.9023 0.89558

CapsNet Accuracy 98.17% 96.13% 93.47% 88.75% 91.00% 93.50%
sensitivity 98.36% 95.78% 95.26% 86.24% 90.35% 93.19%
specificity 97.98% 96.49% 91.66% 91.72% 91.67% 93.90%
FPR 0.0201 0.0350 0.0833 0.0827 0.0832 0.05186
AUC score 0.9817 0.9613 0.9353 0.8872 0.9099 0.93508
F1 score 0.9818 0.9614 0.9361 0.8925 0.9112 0.9366
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0.33762, a mean AUC score of 0.64558, and a mean F1 score of 0.65826 over the Dataset-1
and an accuracy of 53.55%, a sensitivity of 52.54%, a specificity of 54.55%, a FPR of 0.4544,
an AUC score of 0.5355, and a F1 score of 0.5299 over the Dataset-2, whereas decision tree
achieved a mean accuracy of 81.652%, a mean sensitivity of 81.956%, a mean specificity of
81.438%, a mean FPR of 0.18654, a mean AUC score of 0.81648, and a mean F1 score of
0.81836 over the Dataset-1 and an accuracy of 65.02%, a sensitivity of 65.94%, a specificity of
64.13%, a FPR of 0.3586, an AUC score of 0.6504, and a F1 score of 0.6487 over the Dataset-

Table 4 Subject specific estimated performance over the Dataset-2

Performance Evaluation Parameter Approaches

Logistic Regression Decision tree CNN CapsNet

Accuracy 53.55% 65.02% 94.72% 82.61%
Sensitivity 52.54% 65.94% 94.39% 80.54%
Specificity 54.55% 64.13% 95.03% 84.83%
FPR 0.4544 0.3586 0.0496 0.1516
AUC score 0.5355 0.6504 0.9471 0.8266
F1 score 0.5299 0.6487 0.9460 0.8273

Fig. 7 ROC-AUC curve of RL, DT, CNN, CapsNet over the subject1 from Dataset-1
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2. Which tells that the decision tree performs much better than logistic regression. Instead of
traditional classification approaches, in this experiment we have tested the performance of
CNN as CapsNet belongs to CNN family. The performance of CNN has been recorded also in
Tables 3 and 4 over the Dataset-1 and Dataset-2 respectively. From Tables 3 and 4, it has been
observed that CNN achieved a mean accuracy of 89.604%, a mean sensitivity of 88.996%, a
mean specificity of 90.152%, a mean FPR of 0.09818, a mean AUC score of 0.89582, and a
mean F1 score of 0.89558 over the Dataset-1 and an accuracy of 94.72%, a sensitivity of
94.39%, a specificity of 95.03%, a FPR of 0.0496, an AUC score of 0.9471, and a F1 score of
0.9460 over the Dataset-2. Which tells that the CNN performs much better than a decision tree.
Finally, we have estimated the performance of our proposed CapsNet based seizure detection
approach and it has been recorded in Tables 3 and 4 for the Dataset-1 and Dataset-2
respectively. From Tables 3 and 4, it has been observed that our proposed CapsNet based
approach achieved a mean accuracy of 93.50%, a mean sensitivity of 93.19%, a mean
specificity of 93.90%, a mean FPR of 0.05186, a mean AUC score of 0.93508, and a mean
F1 score of 0.9366 over the Dataset-1 and an accuracy of 82.61%, a sensitivity of 80.54%, a
specificity of 84.83%, a FPR of 0.1516, an AUC score of 0.8266, and a F1 score of 0.8273
over the Dataset-2. Which tells that our proposed CapsNet based seizure detection approach
performs much better than CNN based approach.

The present study mainly focusses on the seizure detection performance obtained from our
proposed CapsNet based approach. Seizure detection performances have been recorded and
shown in Tables 3 and 4. It has been observed that our proposed approach achieved better
results as compared to other classification techniques which considered in this experiment.

Fig. 8 ROC-AUC curve of RL, DT, CNN, CapsNet over the subject2 from Dataset-1
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To present a close look of effectiveness of our proposed approach, we have plotted the
ROC curve for each considered techniques over the individual subjects. The ROC curves of
Logistic Regression, Decision Tree, CNN, CapsNet over the Subject1, Subject2, Subject3,
Subject4 and Subject5 for the Dataset-1 have been shown in Figs. 7, 8, 9, 10, and 11
respectively. For Dataset-2, the ROC curves have been shown in Fig. 12. For all ROC curves,
it has been observed that our proposed CapsNet based approach has shown consistence
performance towards the seizure detection task in compare to other three classifiers.

In subject specific training and testing experiment, Table 3, Table 4, and its related ROC
curves (Figs. 7, 8, 9, 10, 11 and 12) suggests that proposed CapsNet based approach can
differentiate seizure epochs and non-seizure epochs effectively. And it shows that our pro-
posed approach performs better than CNN performance.

4.2 Results of cross subjects experiment

In the Cross-subject training and testing experiment, to estimate the performance we have only
considered our proposed CapsNet based approach as it has better performance in subject-
specific training and testing experiments. We have done the cross-subject training and testing
experiments to understand the robustness of the proposed approach over the unknown data
which haven’t been used for training. In this experiment we have considered five subjects from

Fig. 9 ROC-AUC curve of RL, DT, CNN, CapsNet over the subject3 from Dataset-1
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Dataset-1 and five data folders from Dataset-2. For estimating performance of the proposed
CapsNet approach, we have considered five cases for Dataset-1 and two cases for Dataset-2.
For each case in Dataset-1, we have trained the CapsNet over one subject EEG data and testing
has been performed over the remaining four subjects individually. For Dataset-2, data folder A
(Non-seizure) and E (Seizure) have been used for training, for testing folder (B and C), and (B
and D) have been used. The performance of the proposed approach has been estimated and
recorded in Tables 5 and 6 for Dataset-1 and Dataset-2 accordingly. From Table 5, it has been
observed that our proposed approach achieved a mean accuracy of 85.21%, a mean sensitivity
of 84.66%, a mean specificity of 93.14%, a mean FPR of 0.0684, a mean AUC score of
0.8525, and a mean F1 score of 0.8742 in Case-1; a mean accuracy of 86.41%, a mean
sensitivity of 88.85%, a mean specificity of 91.40%, a mean FPR of 0.0857, a mean AUC
score of 0.8653, and a mean F1 score of 0.8832 in Case-2; a mean accuracy of 72.37%, a mean
sensitivity of 67.59%, a mean specificity of 98.95%, a mean FPR of 0.0103, a mean AUC
score of 0.7232, and a mean F1 score of 0.7959 in Case-3; a mean accuracy of 76.52%, a mean
sensitivity of 75.50%, a mean specificity of 95.98%, a mean FPR of 0.0400, a mean AUC
score of 0.7898, and a mean F1 score of 0.8360 in Case-4; a mean accuracy of 56.07%, a mean
sensitivity of 55.63%, a mean specificity of 56.98%, a mean FPR of 0.4297, a mean AUC
score of 0.5600, and a mean F1 score of 0.6063 in Case-5 over the Dataset-1. Which shows
that our proposed approach performed a consistent seizure detection over the Dataset-1. Also,
we have estimated the performance of our proposed approach over the Dataset-2 and has been
recorded in Table 6. From Table 6, it has been observed that our proposed approach achieved a
mean accuracy of 48.45%, a mean sensitivity of 18.66%, a mean specificity of 78.25%, a mean

Fig. 10 ROC-AUC curve of RL, DT, CNN, CapsNet over the subject4 from Dataset-1
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FPR of 0.2174, a mean AUC score of 0.4845, and a mean F1 score of 0.2653 over the Dataset-
2. The performance of the proposed approach is not up to the marks because, in cross-subject
training and testing experiment testing data has not sufficient seizure onset data. In subject-
specific experiment we have already considered data folder A (having non-seizure data) and E
(having Ictal or seizure onset data), so in cross-subject experiment remaining cases we can
form is with data folder B (having non-epileptic data), C (having Inter-ictal data) and D
(having Inter-ictal). For Dataset-2, in cross-subject experiment testing data don’t exactly have
seizure onset data but having inter-ictal EEG data. Due this type of data scenario our proposed
approach has not shown high accuracy, it is indicating that either the proposed approach is
underfitting or it is not blindly giving the high performance. This is an advantage of CapsNet.
So, the performance of the proposed approach is appreciable for seizure onset detection.

Like in subject-specific experiment, here also we have plotted the ROC curve of the
proposed approach over the individual subjects to present a close look of the effectiveness
of our proposed approach. The ROC curves of CapsNet over the Subject1, Subject2, Subject3,
Subject4 and Subject5 from Dataset-1 have been shown in Figs. 13, 14, 15, 16, and 17
respectively. For Dataset-2, the ROC curves have been shown in Fig. 18. For all ROC curves,
it has been observed that our proposed CapsNet based approach has achieved a consistent
performance in seizure detection task in compare to other three classifiers.

Fig. 11 ROC-AUC curve of RL, DT, CNN, CapsNet over the subject5 from Dataset-1
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So, the estimated results of our proposed CapsNet based seizure detection approach have
shown better performance in compare to CNN, RL and DT. The result illustrated that the
shortcoming in the CNN based seizure detection approach can be overcome with the help of
CapsNet techniques, whereas CapsNet is at state-of-the-art phase for the detection of seizure.
So, our proposed CapsNet based seizure detection has an impact in the diagnosis of epileptic
seizure. In this present study, all experimental phases have been executed on Google Colab [5,
11] with Python7.3.

5 Comparison with existing related schemes

Several research papers have been published on seizure detection with some machine learning
techniques as described in the introduction section. Our proposed approach based on CapsNet
technique which is a special configuration of CNN architecture. As we have mentioned earlier
that the CapsNet itself is at state-of-the-art phase for seizure detection, so we have not found
related published articles where CapsNet technique has been applied directly for cross-subject
seizure detection. However, we have found few articles where CapsNet has been used for
Motor Imagery classification and Emotion Recognition over the EEG data. On this view, we
have shown two comparison tables (Tables 7 and 8), where Table 7 shows a comparison with

Fig. 12 ROC-AUC curve of RL, DT, CNN, CapsNet over the Dataset-2
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Fig. 13 ROC curve of CapsNet over the case-1 of Dataset-1

Table 5 Estimated performance of proposed approach in Cross-subject experiment over the Dataset-1

Cases Training Vs. Testing Performance of proposed approach

Training Subject Testing Subject Accuracy sensitivity specificity FPR AUC score F1 score

Case-1 Subject1 Subject2 87.08% 81.79% 94.44% 0.0555 0.8712 0.8804
Subject3 91.21% 98.60% 85.20% 0.1479 0.9153 0.9092
Subject4 95.38% 97.71% 93.66% 0.0633 0.9540 0.9536
Subject5 67.17% 60.55% 99.29% 0.0070 0.6695 0.7536

Mean Performance 85.21% 84.66% 93.14% 0.0684 0.8525 0.8742
Case-2 Subject2 Subject1 95.58% 98.31% 93.60% 0.0639 0.9581 0.9569

Subject3 88.23% 98.85% 80.70% 0.1925 0.8868 0.8742
Subject4 95.24% 98.10% 92.63% 0.0736 0.9528 0.9517
Subject5 66.60% 60.16% 98.68% 0.0131 0.6638 0.7500

Mean Performance 86.41% 88.85% 91.40% 0.0857 0.8653 0.8832
Case-3 Subject3 Subject1 79.39% 70.87% 99.13% 0.0086 0.7949 0.8277

Subject2 64.44% 58.45% 98.31% 0.0168 0.6454 0.7364
Subject4 94.08% 90.07% 99.15% 0.0084 0.9400 0.9444
Subject5 51.60% 50.97% 99.22% 0.0077 0.5127 0.6752

Mean Performance 72.37% 67.59% 98.95% 0.0103 0.7232 0.7959
Case-4 Subject4 Subject1 80.94% 84.04% 98.20% 0.0179 0.8998 0.9069

Subject2 75.37% 67.43% 96.24% 0.0375 0.7542 0.7987
Subject3 93.80% 96.69% 90.99% 0.0900 0.9392 0.9389
Subject5 56.90% 53.87% 98.52% 0.0147 0.5661 0.6997

Mean Performance 76.52% 75.50% 95.98% 0.0400 0.7898 0.8360
Case-5 Subject5 Subject1 55.15% 53.65% 58.25% 0.4174 0.5524 0.6169

Subject2 54.81% 53.78% 56.49% 0.4350 0.5483 0.5966
Subject3 59.10% 59.99% 57.98% 0.4201 0.5882 0.6245
Subject4 55.22% 55.13% 55.22% 0.4465 0.5511 0.5874

Mean Performance 56.07% 55.63% 56.98% 0.4297 0.5600 0.6063

Table 6 Estimated performance of proposed approach in cross-subject experiment over the Dataset-2

Training Testing Accuracy Sensitivity Specificity FPR AUC score F1_score

Dataset A and E Dataset B and C 47.33% 16.42% 78.25% 0.2174 0.4733 0.2377
Dataset B and D 49.57% 20.90% 78.25% 0.2174 0.4957 0.2930

Mean Performance 48.45% 18.66% 78.25% 0.2174 0.4845 0.2653
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Fig. 14 ROC curve of CapsNet over the case-2 of Dataset-1

Fig. 15 ROC curve of CapsNet over the case-3 of Dataset-1

Fig. 16 ROC curve of CapsNet over the case-4 of Dataset-1

Fig. 17 ROC curve of CapsNet over the case-5 of Dataset-1
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CNN based approach against our proposed approach. Table 8, shows a comparison against all
existing approach based on CapsNet with our proposed CapsNet based seizure detection
approach. In our experiment, Tables 7 and 8 shows that the CapsNet based approach can be
one of the approaches for seizure detection using EEG signals, also it has advantages for cross-
subject seizure detection.

6 Conclusion and future work

In this present study, a Capsule Neural Network (CapsNet) based seizure detection approach
has been proposed for the classification of seizure and non-seizure over the epileptic EEG
signals. We have performed subject specific and cross-subject training and testing over the two
datasets. Dataset-1 [7] is multi-channel EEG dataset and Dataset-2 [14] is a single channel
EEG dataset. The EEG datasets have been arranged as per the seizure and non-seizure time
stamp. After that L2 normalization technique has been used to normalize the raw EEG data.
After normalization, the data have been divided in batch size 10 then fed into the configured
CapsNet to perform the seizure detection task. It has been observed that CapsNet perform
better as compared to CNN and other traditional classification algorithms by giving a highest
average accuracy of 93.50% and also overcomes all issues related to CNN over the seizure
detection. Thus, this could be a capable approach for seizure and non-seizure EEG signals
classification over the epileptic EEG signals and it can be used effectively for seizure
detection.

Limitations of this work is belonging to the generalization of the proposed approach for
achieving more robust performance of cross-subject seizure detection. Future work can be
focused on the generalization of the proposed approach, which may help us to increase the
more robustness of the model. Also, we can use graph neural network based approaches, or by
introducing attention based mechanism in capsule neural network for cross-subject seizure
detection. During the generalization of the proposed approach, we can use the whole dataset to
verify the performance instead of the five subjects EEG data from the Dataset-1 which is used
in this experiment. Our proposed approach can be tested and useable for Alzheimer’s, Autism,
Schizophrenia, and related disease detection over EEG signals.

Fig. 18 ROC curve of CapsNet over the of Dataset-2
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