
Huffman Coding

Huffman coding is a lossless data compression algorithm. The idea is to assign variable-length

codes to input characters, lengths of the assigned codes are based on the frequencies of

corresponding characters. The most frequent character gets the smallest code and the least

frequent character gets the largest code.

The variable-length codes assigned to input characters are Prefix Codes, means the codes (bit

sequences) are assigned in such a way that the code assigned to one character is not the prefix of

code assigned to any other character. This is how Huffman Coding makes sure that there is no

ambiguity when decoding the generated bitstream.

Let us understand prefix codes with a counter example. Let there be four characters a, b, c and d,

and their corresponding variable length codes be 00, 01, 0 and 1. This coding leads to ambiguity

because code assigned to c is the prefix of codes assigned to a and b. If the compressed bit

stream is 0001, the de-compressed output may be "cccd" or "ccb" or "acd" or "ab".

See this for applications of Huffman Coding.

There are mainly two major parts in Huffman Coding

1. Build a Huffman Tree from input characters.

2. Traverse the Huffman Tree and assign codes to characters.

Steps to build Huffman Tree

Input is an array of unique characters along with their frequency of occurrences and output is

Huffman Tree.

1. Create a leaf node for each unique character and build a min heap of all leaf nodes (Min

Heap is used as a priority queue. The value of frequency field is used to compare two

nodes in min heap. Initially, the least frequent character is at root)

2. Extract two nodes with the minimum frequency from the min heap.

3. Create a new internal node with a frequency equal to the sum of the two nodes

frequencies. Make the first extracted node as its left child and the other extracted node as

its right child. Add this node to the min heap.

http://en.wikipedia.org/wiki/Huffman_coding#Applications

4. Repeat steps#2 and #3 until the heap contains only one node. The remaining node is the

root node and the tree is complete.

Let us understand the algorithm with an example:
character Frequency

 a 5

 b 9

 c 12

 d 13

 e 16

 f 45

Step 1. Build a min heap that contains 6 nodes where each node represents root of a tree with

single node.

Step 2 Extract two minimum frequency nodes from min heap. Add a new internal node with

frequency 5 + 9 = 14.

Now min heap contains 5 nodes where 4 nodes are roots of trees with single element each, and

one heap node is root of tree with 3 elements

character Frequency

 c 12

 d 13

 Internal Node 14

 e 16

 f 45

Step 3: Extract two minimum frequency nodes from heap. Add a new internal node with

frequency 12 + 13 = 25

Now min heap contains 4 nodes where 2 nodes are roots of trees with single element each, and

two heap nodes are root of tree with more than one nodes

character Frequency

Internal Node 14

 e 16

Internal Node 25

 f 45

Step 4: Extract two minimum frequency nodes. Add a new internal node with frequency 14 + 16

= 30

Now min heap contains 3 nodes.

character Frequency

Internal Node 25

Internal Node 30

 f 45

Step 5: Extract two minimum frequency nodes. Add a new internal node with frequency 25 + 30

= 55

Now min heap contains 2 nodes.

character Frequency

 f 45

Internal Node 55

Step 6: Extract two minimum frequency nodes. Add a new internal node with frequency 45 + 55

= 100

Now min heap contains only one node.

character Frequency

Internal Node 100

Since the heap contains only one node, the algorithm stops here.

Steps to print codes from Huffman Tree:

Traverse the tree formed starting from the root. Maintain an auxiliary array. While moving to the

left child, write 0 to the array. While moving to the right child, write 1 to the array. Print the

array when a leaf node is encountered.

The codes are as follows:

character code-word

 f 0

 c 100

 d 101

 a 1100

 b 1101

 e 111

Huffman Coding using Priority Queue

Prerequisite: Greedy Algorithms | Set 3 (Huffman
Coding), priority_queue::push() and priority_queue::pop() in C++ STL
Given a char array ch[] and frequency of each character as freq[]. The task
is to find Huffman Codes for every character in ch[] using Priority Queue.

Example
Input: ch[] = { ‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’ }, freq[] = { 5, 9, 12, 13, 16, 45 }
Output:
f 0
c 100
d 101
a 1100
b 1101
e 111

Approach:
1. Push all the characters in ch[] mapped to corresponding

frequency freq[] in priority queue.
2. To create Huffman Tree, pop two nodes from priority queue.

https://www.geeksforgeeks.org/huffman-coding-greedy-algo-3/
https://www.geeksforgeeks.org/huffman-coding-greedy-algo-3/
https://www.geeksforgeeks.org/priority_queuepush-priority_queuepop-c-stl/
https://www.geeksforgeeks.org/introduction-to-arrays/
https://www.geeksforgeeks.org/priority-queue-set-1-introduction/
https://www.geeksforgeeks.org/priority-queue-set-1-introduction/

3. Assign two popped node from priority queue as left and right child of new
node.

4. Push the new node formed in priority queue.
5. Repeat all above steps until size of priority queue becomes 1.
6. Traverse the Huffman Tree (whose root is the only node left in the priority

queue) to store the Huffman Code
7. Print all the stored Huffman Code for every character in ch[].
Below is the implementation of the above approach:

// C++ Program for Huffman Coding
// using Priority Queue
#include <iostream>
#include <queue>
using namespace std;

// Maximum Height of Huffman Tree.
#define MAX_SIZE 100

class HuffmanTreeNode {
public:
 // Stores character
 char data;
 int freq;
 HuffmanTreeNode* left;
 HuffmanTreeNode* right;

 // Initializing the current node
 HuffmanTreeNode(char character, int frequency)
 {
 data = character;
 freq = frequency;
 left = right = NULL;
 }
};

 // Custom comparator class
class Compare {
public:
 bool operator()(HuffmanTreeNode* a, HuffmanTreeNode* b)
 {
 // Defining priority on the basis of frequency
 return a->freq > b->freq;
 }
};

https://www.geeksforgeeks.org/priority-queue-set-1-introduction/
https://www.geeksforgeeks.org/priority-queue-set-1-introduction/
https://www.geeksforgeeks.org/huffman-coding-greedy-algo-3/

// Function to generate Huffma Encoding Tree
HuffmanTreeNode* generateTree(priority_queue<HuffmanTreeNode*,
 vector<HuffmanTreeNode*>,Compare> pq)
{
 // We keep on looping till only one node remains in the Priority Queue
 while (pq.size() != 1) {

 // Node which has least frequency and Remove node from Priority Queue

 HuffmanTreeNode* left = pq.top();
 pq.pop();

 // Node which has least frequency and Remove node from Priority Queue

 HuffmanTreeNode* right = pq.top();
 pq.pop();

 // A new node is formed with frequency left->freq + right->freq
 // We take data as '$' because we are only concerned with the frequency

 HuffmanTreeNode* node = new HuffmanTreeNode('$', left->freq+ right->freq);
 node->left = left;
 node->right = right;

 // Push back node created to the Priority Queue
 pq.push(node);
 }
 return pq.top();
}

// Function to print the huffman code for each character.
// It uses arr to store the codes

void printCodes(HuffmanTreeNode* root, int arr[], int top)
{
 // Assign 0 to the left node and recur
 if (root->left) {
 arr[top] = 0;
 printCodes(root->left, arr, top + 1);
 }

 // Assign 1 to the right node and recur
 if (root->right) {
 arr[top] = 1;
 printCodes(root->right, arr, top + 1);
 }

 // If this is a leaf node, then we print root->data

 // We also print the code for this character from arr
 if (!root->left && !root->right) {
 cout << root->data << " ";

 for (int i = 0; i < top; i++) {
 cout << arr[i];
 }
 cout << endl;
 }
}

void HuffmanCodes(char data[],int freq[], int size)
{
 // Declaring priority queue using custom comparator
 priority_queue<HuffmanTreeNode*,vector<HuffmanTreeNode*>,Compare> pq;

 // Populating the priority queue
 for (int i = 0; i < size; i++) {
 HuffmanTreeNode* newNode = new HuffmanTreeNode(data[i], freq[i]);
 pq.push(newNode);
 }

 // Generate Huffman Encoding Tree and get the root node
 HuffmanTreeNode* root = generateTree(pq);

 // Print Huffman Codes
 int arr[MAX_SIZE], top = 0;
 printCodes(root, arr, top);
}

// Driver Code
int main()
{
 char data[] = { 'a', 'b', 'c', 'd', 'e', 'f' };
 int freq[] = { 5, 9, 12, 13, 16, 45 };
 int size = sizeof(data) / sizeof(data[0]);

 HuffmanCodes(data, freq, size);
 return 0;
}

Output:

f 0

c 100

d 101

a 1100

b 1101

e 111

Time Complexity: O(n*logn) where n is the number of unique characters
Auxiliary Space: O(n)

