Huffman Coding

Huffman coding is a lossless data compression algorithm. The idea is to assign variable-length
codes to input characters, lengths of the assigned codes are based on the frequencies of
corresponding characters. The most frequent character gets the smallest code and the least
frequent character gets the largest code.

The variable-length codes assigned to input characters are Prefix Codes, means the codes (bit
sequences) are assigned in such a way that the code assigned to one character is not the prefix of
code assigned to any other character. This is how Huffman Coding makes sure that there is no
ambiguity when decoding the generated bitstream.

Let us understand prefix codes with a counter example. Let there be four characters a, b, ¢ and d,
and their corresponding variable length codes be 00, 01, 0 and 1. This coding leads to ambiguity
because code assigned to c is the prefix of codes assigned to a and b. If the compressed bit
stream is 0001, the de-compressed output may be "cccd™ or "ccb” or "acd™ or "ab".

See this for applications of Huffman Coding.
There are mainly two major parts in Huffman Coding

1. Build a Huffman Tree from input characters.
2. Traverse the Huffman Tree and assign codes to characters.

Steps to build Huffman Tree
Input is an array of unique characters along with their frequency of occurrences and output is
Huffman Tree.

1. Create a leaf node for each unique character and build a min heap of all leaf nodes (Min
Heap is used as a priority queue. The value of frequency field is used to compare two
nodes in min heap. Initially, the least frequent character is at root)

2. Extract two nodes with the minimum frequency from the min heap.

3. Create a new internal node with a frequency equal to the sum of the two nodes
frequencies. Make the first extracted node as its left child and the other extracted node as
its right child. Add this node to the min heap.

http://en.wikipedia.org/wiki/Huffman_coding#Applications

4. Repeat steps#2 and #3 until the heap contains only one node. The remaining node is the
root node and the tree is complete.
Let us understand the algorithm with an example:

character Frequency

a 5

b 9

C 12

d 13

e 16

f 45
Step 1. Build a min heap that contains 6 nodes where each node represents root of a tree with
single node.

Step 2 Extract two minimum frequency nodes from min heap. Add a new internal node with
frequency 5 + 9 = 14,

1l

Xla| 5 [X] X|b]| 9 X

Now min heap contains 5 nodes where 4 nodes are roots of trees with single element each, and
one heap node is root of tree with 3 elements

character Frequency
C 12
d 13
Internal Node 14
e 16
f 45

Step 3: Extract two minimum frequency nodes from heap. Add a new internal node with
frequency 12 + 13 =25

X|c|12 [X| [X|d |23 [X

Now min heap contains 4 nodes where 2 nodes are roots of trees with single element each, and
two heap nodes are root of tree with more than one nodes

character Frequency
Internal Node 14

e 16
Internal Node 25

f 45

Step 4: Extract two minimum frequency nodes. Add a new internal node with frequency 14 + 16
=30

X|2| 5 [X| X[b| 9 [X

Now min heap contains 3 nodes.

character Frequency
Internal Node 25
Internal Node 30

f 45

Step 5: Extract two minimum frequency nodes. Add a new internal node with frequency 25 + 30
=55

Xlel22[x] (alsa [x] iia] s I¥| (o] s [X

Now min heap contains 2 nodes.

character Frequency
f 45
Internal Node 55

Step 6: Extract two minimum frequency nodes. Add a new internal node with frequency 45 + 55
=100

Kle!28 X
Keln X Mlalas X Xals K jin]'s

Now min heap contains only one node.

character Frequency
Internal Node 100

Since the heap contains only one node, the algorithm stops here.

Steps to print codes from Huffman Tree:

Traverse the tree formed starting from the root. Maintain an auxiliary array. While moving to the
left child, write O to the array. While moving to the right child, write 1 to the array. Print the
array when a leaf node is encountered.

| -
X[s X }/ljt\ﬁ
P g3
%‘”’*1 QR KishiX
Xle| 12 [X @xsb{ Wa s X b\'b 9[X|

The codes are as follows:

character code-word
f 0

100

101

1100

1101

111

©O O o Q0

Huffman Coding using Priority Queue

Prerequisite: Greedy Algorithms | Set 3 (Huffman

Coding), priority _queue::push() and priority _queue::pop() in C++ STL

Given a char array ch[] and frequency of each character as freq[]. The task
Is to find Huffman Codes for every character in ch[] using Priority Queue.

Example

Input: chf]={"a’, ‘b’ ‘c’, ‘d’, e’, T}, freq[]={5,9, 12, 13, 16, 45}
Output:

fo

c 100

d 101

a 1100

b 1101

el11

Approach:

1. Push all the characters in ch[] mapped to corresponding
frequency freq[] in priority queue.

2. To create Huffman Tree, pop two nodes from priority queue.

https://www.geeksforgeeks.org/huffman-coding-greedy-algo-3/
https://www.geeksforgeeks.org/huffman-coding-greedy-algo-3/
https://www.geeksforgeeks.org/priority_queuepush-priority_queuepop-c-stl/
https://www.geeksforgeeks.org/introduction-to-arrays/
https://www.geeksforgeeks.org/priority-queue-set-1-introduction/
https://www.geeksforgeeks.org/priority-queue-set-1-introduction/

4
5.
6

7

. Assign two popped node from priority queue as left and right child of new

node.

. Push the new node formed in priority queue.

Repeat all above steps until size of priority queue becomes 1.

. Traverse the Huffman Tree (whose root is the only node left in the priority

gueue) to store the Huffman Code
Print all the stored Huffman Code for every character in ch[].

Below is the implementation of the above approach:

// C++ Program for Huffman Coding
// using Priority Queue

#include <iostream>

#include <queue>

using namespace std;

// Maximum Height of Huffman Tree.
#define MAX SIZE 100

class HuffmanTreeNode {
public:

b

// Stores character
char data;

int freqg;
HuffmanTreeNode* left;
HuffmanTreeNode* right;

// Initializing the current node
HuffmanTreeNode (char character, int frequency)
{

data = character;

freg frequency;

left right = NULL;

// Custom comparator class
class Compare {
public:

bool operator () (HuffmanTreeNode* a, HuffmanTreeNode* D)

{

// Defining priority on the basis of frequency
return a->freq > b->freq;

https://www.geeksforgeeks.org/priority-queue-set-1-introduction/
https://www.geeksforgeeks.org/priority-queue-set-1-introduction/
https://www.geeksforgeeks.org/huffman-coding-greedy-algo-3/

// Function to generate Huffma Encoding Tree
HuffmanTreeNode* generateTree (priority queue<HuffmanTreeNode%*,
vector<HuffmanTreeNode*>, Compare> pq)

{

// We keep on looping till only one node remains in the Priority Queue
while (pg.size() !'= 1) {

// Node which has least frequency and Remove node from Priority Queue

HuffmanTreeNode* left = pg.top():
pg.pop () ;

// Node which has least frequency and Remove node from Priority Queue

HuffmanTreeNode* right = pqg.top();
pg.pop () ;

// A new node is formed with frequency left->freq + right->freq
// We take data as '$' because we are only concerned with the frequency

HuffmanTreeNode* node = new HuffmanTreeNode ('$', left->freg+ right->freq);
node->left = left;
node->right = right;

// Push back node created to the Priority Queue
pg.push (node) ;

}
return pg.top () ;

// Function to print the huffman code for each character.
// It uses arr to store the codes

void printCodes (HuffmanTreeNode* root, int arr[], int top)
{
// Assign 0 to the left node and recur
if (root->left) {
arr[top] = 0;
printCodes (root->left, arr, top + 1);

// Assign 1 to the right node and recur
if (root->right) {

arr[top] = 1;

printCodes (root->right, arr, top + 1);

// If this is a leaf node, then we print root->data

// We also print the code for this character from arr
if (!root->left && !root->right) {
cout << root->data << " ";

for (inti = 0; i < top; i++) {
cout << arr[i]l;

}

cout << endl;

void HuffmanCodes (char datal[], int freq[], int size)

{

// Declaring priority queue using custom comparator
priority queue<HuffmanTreeNode*,vector<HuffmanTreeNode*>,Compare> pg;

// Populating the priority queue

for (inti = 0; 1 < size; i++) {
HuffmanTreeNode* newNode = new HuffmanTreeNode (datal[i], freqlil]):
pg.push (newNode) ;

// Generate Huffman Encoding Tree and get the root node
HuffmanTreeNode* root = generateTree (pq);

// Print Huffman Codes
int arr[MAX SIZE], top = 0;
printCodes (root, arr, top);

// Driver Code
int main ()

{

char datal[] = { 'a', 'b', 'c¢', 'd', 'e', 'f'};
int freql(] = { 5, 9, 12, 13, 16, 45 };
int size = sizeof(data) / sizeof (data[0]);

HuffmanCodes (data, freq, size);
return 0;

Output:

)] aQa 0N —+H

(on

9

100
101

1100

1101

111

Time Complexity: O(n*logn) where n is the number of unique characters
Auxiliary Space: O(n)

Lecture 140: GREEDY ALGORITHMS in 1 VIDEO

<[> Problem B Editorial ® Submissions © Comments Coe(gee5.4) « G e 0%
. 1+ E=B// } Driver Code Ends
Huffman Encoding [E 13 6
7 - class Node {
Medium Accuracy: 49.6% Submissions: 11213 Points: 4 8 public:
9 int data;
. - . . 10 Node* left;
Given a string S of distinct character of size N and their corresponding 11 Node* right
frequency f[]i.e. character S[il has f[i] frequency. Your task is to 12
build the Huffman tree print all the huffman codes in preorder traversal of £ NodeCint d) {
14 data = d;
the tree. 15 left = NULL;
Note: While merging if two nodes have the same value, then the node 16 right = NULL;
which occurs at first will be taken on the left of Binary Tree and the other i; 3 ¥
one to the right, otherwise Node with less value will be taken on the left of 19 ’
the subtree and other one to the right. 20~ class cmp {
21 public:
Example 1: ‘\ 22- bool operator()(Node* a, Node* b) {
/23 return a->data > b->data;
24 }
S = "abcdef" 250 };
[l = {5, 9, 12, 13, 16, 45} 5(75 ;lass Solution
Output: 28 public:
0 100 101 1100 1101 111 29 vector<string> huffmanCodes(string S,vector<int> f,int N)
lanation: 30~
E 31

P Ml < 54437/1:99%50 % Code 7>

Lecture 140: GREEDY ALGORITHMS in 1 VIDEO

</> Problem B Editorial ® Submissions © Comments Ces(ge+5.4) « eroTR
2 23 return a->data > b->data;
Huffman Encoding [] £ 24}
A y: 49.6% 1213 Points: 4 52 i{ass Solution
27~ {
28 public:
Given a string S of distinct character of size N and their corresponding 29 vector<string> huffmanCodes(string S,vector<int> f,int N)
frequency f[1i.e. character S[il has f[i] frequency. Your task s to 30~ {
build the Huffman tree print all the huffman codes in preorder traversal of g; priority_queue<Node*, vector<Node*>, cmp> pq;
the tree. 33~ for(int i=0; i<n; i++) {
Note: While merging if two nodes have the same value, then the node 34 Node* temp = new Node(f[il);
which occurs at first will be taken on the left of Binary Tree and the other gz 3 Pq.push(temp);
one to the right, otherwise Node with less value will be taken on the left of 37
the subtree and other one to the right. 38~ while(pg.size() > 1) {
Node* left = pq.top();
Example 1: pq.popQ);
Node* right = pq.topQ);

S = "abcdef" pq.popQ);

fll = {5, 9, 12, 13, 16, 45} Nod&s FiiiNode = Fiew NGdeT)

Output: i

0 100 101 1100 1101 111

Explanation:

56:067/1:29:50 ¥ Code 7>

Lecture 140: GREEDY ALGORITHMS in 1 VIDEO

«/> Problem B Editorial
Huffman Encoding [] £ 3
A 49.6% issil 1213 Points: 4

Given a string S of distinct character of size N and their corresponding
frequency f[]i.e. character S[il has f[i] frequency. Your taskiis to

build the Huffman tree print all the huffman codes in preorder traversal of
the tree.

Note: While merging if two nodes have the same value, then the node
which occurs at first will be taken on the left of Binary Tree and the other
one to the right, otherwise Node with less value will be taken on the left of
the subtree and other one to the right.

Example 1:

Compilation Results Custom Input

59 12 13 16 45

Your Output:

) »Code 7>

Lecture 140: GREEDY ALGORITHMS in 1 VIDEO

</> Problem B Editorial ® Submissions £ Comments
Huffman Encoding [] £ 3
A y: 49.6% issions: 11213 Points: 4

Given a string S of distinct character of size N and their corresponding
frequency f[] i.e. character S[i] has f[i] frequency. Your task is to

build the Huffman tree print all the huffman codes in preorder traversal of
the tree.

Note: While merging if two nodes have the same value, then the node
which occurs at first will be taken on the left of Binary Tree and the other
one to the right, otherwise Node with less value will be taken on the left of
the subtree and other one to the right.

Example 1:

Compilation Results Custom Input

59 12 13 16 45

Your Output:

> M ¢ 5916/1:28

Ces(ge+54)
28 public:
29 vector<string> huffmanCodes(string S,vector<int> f,int N)
30~ {
31 priority_queue<Node*, vector<Node*-, cmp> pgq;
32
33~ for(int i=0; i<n; i++) {
34 Node* temp = new Node(f[i]);
35 pq.push(temp);
36 }
37
38~ while(pq.sizeQ) > 1) {
39 Node* left = pq.top();
40 pa.popQ;
41
42 Node* right = pq.topQ);
43 pq.pop();
44

Node* newNode = new Node(left->Data + right->data);

46 newNode->left = left;
47 newNode->right = right;
48 pq.push(newNode) ;

49 }

Node* root = pq.top(Q);
vector<string> ans;

string temp = "";
traverse(root, ans, temp);

Coe(gee6.4)«

P2s ¥

25 1

26 class Solution

2= 1

28 public:

29~ void traverse(Node* root, vector<string-& ans, string temp) {
30 ///base case

31~ if(root->left == NULL && root->right == NULL) {
32 ans.push_back(temp);

33 return;

34 }

36 traverse(root->left, ans, temp+'0');
37 traverse(root->right, ans, temp+'1');

39 }
40 vector<string> huffmanCodes(string S,vector<int> f,int N)

priority_queue<Node*, vector<Node*>, cmp> pq;

44~ forCint i=@; i<n; i++) {
45 Node* temp = new Node(f[i]);
46 pq.push(temp);

}

while(pq.size() > 1) {
Node* left = pq.top();
Pq.popQ;

